Image from Google Jackets

Creep behavior of bagasse fiber reinforced polymer composites

Tipo de material: TextoTextoSeries ; Bioresource Technology, 101(9), p.3280-3286, 2010Trabajos contenidos:
  • Xu, Y
  • Wu, Q
  • Lei, Y
  • Yao, F
Tema(s): Recursos en línea: Resumen: The creep behavior of bagasse-based composites with virgin and recycled polyvinyl chloride (B/PVC)and high density polyethylene (B/HDPE)as well as a commercial wood and HDPE composite decking material was investigated. The instantaneous deformation and creep rate of all composites at the same loading level increased at higher temperatures. At a constant load level, B/PVC composites had better creep resistance than B/HDPE systems at low temperatures. However, B/PVC composites showed greater temperature-dependence. Several creep models (i.e., Burgers model, Findley's power law model, and a simpler two-parameter power law model)were used to fit the measured creep data. Time-temperature superposition (TTS)was attempted for long-term creep prediction. The four-element Burgers model and the two-parameter power law model fitted creep curves of the composites well. The TTS principle more accurately predicted the creep response of the PVC composites compared to the HDPE composites. © 2009 Elsevier Ltd.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-16193 (Browse shelf(Opens below)) Available

The creep behavior of bagasse-based composites with virgin and recycled polyvinyl chloride (B/PVC)and high density polyethylene (B/HDPE)as well as a commercial wood and HDPE composite decking material was investigated. The instantaneous deformation and creep rate of all composites at the same loading level increased at higher temperatures. At a constant load level, B/PVC composites had better creep resistance than B/HDPE systems at low temperatures. However, B/PVC composites showed greater temperature-dependence. Several creep models (i.e., Burgers model, Findley's power law model, and a simpler two-parameter power law model)were used to fit the measured creep data. Time-temperature superposition (TTS)was attempted for long-term creep prediction. The four-element Burgers model and the two-parameter power law model fitted creep curves of the composites well. The TTS principle more accurately predicted the creep response of the PVC composites compared to the HDPE composites. © 2009 Elsevier Ltd.

There are no comments on this title.

to post a comment.