Image from Google Jackets

Spatial sensing using electrical impedance tomography

Tipo de material: TextoTextoSeries ; IEEE Sensors Journal, 13(6), p.2357-2367, 2013Trabajos contenidos:
  • Loyola, B.R
  • Saponara, V.L
  • Loh, K.J
  • Briggs, T.M
  • O'Bryan, G
  • Skinner, J.L
Tema(s): Recursos en línea: Resumen: The need for structural health monitoring has become critical due to aging infrastructures, legacy airplanes, and continuous development of new structural technologies. Based on an updated structural design, there is a need for new structural health monitoring paradigms that can sense the presence, location, and severity with a single measurement. This paper focuses on the first step of this paradigm, consisting of applying a sprayed conductive carbon nanotube-polymer film upon glass fiber-reinforced polymer composite substrates. Electrical impedance tomography is performed to measure changes in conductivity within the conductive films because of damage. Simulated damage is a method for validation of this approach. Finally, electrical impedance tomography measurements are taken while the conductive films are subjected to tensile and compressive strain states. This demonstrates the ability of electrical impedance tomography for not only damage detection, but active structural monitoring as well. This paper acts as a first step toward moving the structural health monitoring paradigm toward large-scale deployable spatial sensing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-16357 (Browse shelf(Opens below)) Available

The need for structural health monitoring has become critical due to aging infrastructures, legacy airplanes, and continuous development of new structural technologies. Based on an updated structural design, there is a need for new structural health monitoring paradigms that can sense the presence, location, and severity with a single measurement. This paper focuses on the first step of this paradigm, consisting of applying a sprayed conductive carbon nanotube-polymer film upon glass fiber-reinforced polymer composite substrates. Electrical impedance tomography is performed to measure changes in conductivity within the conductive films because of damage. Simulated damage is a method for validation of this approach. Finally, electrical impedance tomography measurements are taken while the conductive films are subjected to tensile and compressive strain states. This demonstrates the ability of electrical impedance tomography for not only damage detection, but active structural monitoring as well. This paper acts as a first step toward moving the structural health monitoring paradigm toward large-scale deployable spatial sensing.

There are no comments on this title.

to post a comment.