Image from Google Jackets

Multi-crosslinked, ecofriendly flame-retardant starch-based composite aerogels with high compression-resistance

Tipo de material: TextoTextoSeries Polymer Engineering and Science. 63(1), 154-166, 2023, DOI: 10.1002/pen.26194Trabajos contenidos:
  • Shi S
  • Jiang Y
  • Ji Q
  • Xing Y
  • Ma X
  • Xia Y
Tema(s): Recursos en línea: Resumen: To achieve ecofriendly aerogels with high mechanics and fire resistance, naturally-occurring pea starch was employed as the major substrate, and starch-based composite aerogels were fabricated by freeze-drying method. The corresponding hydrogels were obtained through successive gelatinization/dissolution of pea starch and polyvinyl alcohol (PVA), formation of precursor hydrogels via cyclic freeze-thawing, followed by treatment with borax aqueous solution. Borax treatment not only results in aerogels with high mechanics, but also endows the aerogels flame-retardant property. The final aerogels show high compression-resistance, with a maximum specific compressive modulus achieved at ~44 MPa and the yield strength 665 kPa, owing to the formation of a multi-crosslinked hybrid network. The maximum limiting oxygen index (LOI) of the aerogels exceeds 34. The peak heat release rate, the heat release capacity, and the total heat release decrease 74.5%, 76.2%, and 73.8% after borax treatment. Moreover, the obtained aerogels demonstrate good thermal stability and thermal insulation. The good performance is conducive for practical application. © 2022 Society of Plastics Engineers.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-21304 (Browse shelf(Opens below)) Available

To achieve ecofriendly aerogels with high mechanics and fire resistance, naturally-occurring pea starch was employed as the major substrate, and starch-based composite aerogels were fabricated by freeze-drying method. The corresponding hydrogels were obtained through successive gelatinization/dissolution of pea starch and polyvinyl alcohol (PVA), formation of precursor hydrogels via cyclic freeze-thawing, followed by treatment with borax aqueous solution. Borax treatment not only results in aerogels with high mechanics, but also endows the aerogels flame-retardant property. The final aerogels show high compression-resistance, with a maximum specific compressive modulus achieved at ~44 MPa and the yield strength 665 kPa, owing to the formation of a multi-crosslinked hybrid network. The maximum limiting oxygen index (LOI) of the aerogels exceeds 34. The peak heat release rate, the heat release capacity, and the total heat release decrease 74.5%, 76.2%, and 73.8% after borax treatment. Moreover, the obtained aerogels demonstrate good thermal stability and thermal insulation. The good performance is conducive for practical application. © 2022 Society of Plastics Engineers.

There are no comments on this title.

to post a comment.