Image from Google Jackets

The Pillars of Computation Theory [recurso electrónico] : State, Encoding, Nondeterminism / by Arnold L. Rosenberg.

Por: Colaborador(es): Tipo de material: TextoTextoSeries UniversitextEditor: New York, NY : Springer New York, 2010Edición: FirstDescripción: XVIII, 326p. 49 illus. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387096391
  • 99780387096391
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 518 23
  • 518 23
Recursos en línea:
Contenidos:
PROLEGOMENA -- Mathematical Preliminaries -- STATE -- Online Automata: Exemplars of "State" -- Finite Automata and Regular Languages -- Applications of the Myhill-Nerode Theorem -- Enrichment Topics -- ENCODING -- Countability and Uncountability: The Precursors of "Encoding" -- Enrichment Topic: "Efficient" Pairing Functions, with Applications -- Computability Theory -- NONDETERMINISM -- Nondeterministic Online Automata -- Nondeterministic FAs -- Nondeterminism in Computability Theory -- Complexity Theory.
En: Springer eBooksResumen: Computation theory is a discipline that strives to use mathematical tools and concepts in order to expose the nature of the activity that we call "computation" and to explain a broad range of observed computational phenomena. Why is it harder to perform some computations than others? Are the differences in difficulty that we observe inherent, or are they artifacts of the way we try to perform the computations? Even more basically: how does one reason about such questions? This book strives to endow upper-level undergraduate students and lower-level graduate students with the conceptual and manipulative tools necessary to make Computation theory part of their professional lives. The author tries to achieve this goal via three stratagems that set this book apart from most other texts on the subject. (1) The author develops the necessary mathematical concepts and tools from their simplest instances, so that the student has the opportunity to gain operational control over the necessary mathematics. (2) He organizes the development of the theory around the three "pillars" that give the book its name, so that the student sees computational topics that have the same intellectual origins developed in physical proximity to one another. (3) He strives to illustrate the "big ideas" that computation theory is built upon with applications of these ideas within "practical" domains that the students have seen elsewhere in their courses, in mathematics, in computer science, and in computer engineering.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 518 (Browse shelf(Opens below)) Available

PROLEGOMENA -- Mathematical Preliminaries -- STATE -- Online Automata: Exemplars of "State" -- Finite Automata and Regular Languages -- Applications of the Myhill-Nerode Theorem -- Enrichment Topics -- ENCODING -- Countability and Uncountability: The Precursors of "Encoding" -- Enrichment Topic: "Efficient" Pairing Functions, with Applications -- Computability Theory -- NONDETERMINISM -- Nondeterministic Online Automata -- Nondeterministic FAs -- Nondeterminism in Computability Theory -- Complexity Theory.

Computation theory is a discipline that strives to use mathematical tools and concepts in order to expose the nature of the activity that we call "computation" and to explain a broad range of observed computational phenomena. Why is it harder to perform some computations than others? Are the differences in difficulty that we observe inherent, or are they artifacts of the way we try to perform the computations? Even more basically: how does one reason about such questions? This book strives to endow upper-level undergraduate students and lower-level graduate students with the conceptual and manipulative tools necessary to make Computation theory part of their professional lives. The author tries to achieve this goal via three stratagems that set this book apart from most other texts on the subject. (1) The author develops the necessary mathematical concepts and tools from their simplest instances, so that the student has the opportunity to gain operational control over the necessary mathematics. (2) He organizes the development of the theory around the three "pillars" that give the book its name, so that the student sees computational topics that have the same intellectual origins developed in physical proximity to one another. (3) He strives to illustrate the "big ideas" that computation theory is built upon with applications of these ideas within "practical" domains that the students have seen elsewhere in their courses, in mathematics, in computer science, and in computer engineering.

There are no comments on this title.

to post a comment.