Microplastics toxicity, detection, and removal from water/wastewater
Microplastics toxicity, detection, and removal from water/wastewater
- Marine Pollution bulletin, 187, p.114546, 2023 .
The world has witnessed massive and preeminent microplastics (MPs)pollution in water bodies due to the inevitable continuous production of plastics for various advantageous chemical and mechanical features. Plastic pollution, particularly contamination by MPs (plastic particles having a diameter lesser than 5 mm), has been a rising environmental concern in recent years due to the inappropriate disposal of plastic trash. This study presents the recent advancements in different technologies for MPs removal in order to gain proper insight into their strengths and weaknesses, thereby orchestrating the preparation for innovation in the field. The production, origin, and global complexity of MPs were discussed. This study also reveals MPs' mode of transportation, its feedstock polymers, toxicities, detection techniques, and the conventional removal strategies of MPs from contaminated systems. Modification of conventional methods vis-à-vis new materials/techniques and other emerging technologies, such as magnetic extraction and sol-gel technique with detailed mechanistic information for the removal of MPs are presented in this study. Conclusively, some future research outlooks for advancing the MPs removal technologies/materials for practical realization are highlighted.
MICROPLASTICS
POLLUTION
WASTEWATER
REMOVAL TECHNOLOGIES
MECHANISMS
The world has witnessed massive and preeminent microplastics (MPs)pollution in water bodies due to the inevitable continuous production of plastics for various advantageous chemical and mechanical features. Plastic pollution, particularly contamination by MPs (plastic particles having a diameter lesser than 5 mm), has been a rising environmental concern in recent years due to the inappropriate disposal of plastic trash. This study presents the recent advancements in different technologies for MPs removal in order to gain proper insight into their strengths and weaknesses, thereby orchestrating the preparation for innovation in the field. The production, origin, and global complexity of MPs were discussed. This study also reveals MPs' mode of transportation, its feedstock polymers, toxicities, detection techniques, and the conventional removal strategies of MPs from contaminated systems. Modification of conventional methods vis-à-vis new materials/techniques and other emerging technologies, such as magnetic extraction and sol-gel technique with detailed mechanistic information for the removal of MPs are presented in this study. Conclusively, some future research outlooks for advancing the MPs removal technologies/materials for practical realization are highlighted.
MICROPLASTICS
POLLUTION
WASTEWATER
REMOVAL TECHNOLOGIES
MECHANISMS
