The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites
The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites
- Composites Science and Technology, 169, p.224-231, 2019 .
The network formation of reduced graphene oxide (rGO)within an epoxy resin during curing has been in-situ visualised for the first time, with its effect on electrical, mechanical, and multifunctional properties of these nanocomposites explored. Different initial states of dispersion and filler contents were employed to examine the nanofiller network formation process. Good electrical conductivity (10?3?S/m at 0.05?wt percent rGO)together with good mechanical reinforcement (12 percent increase in flexural modulus at 0.2?wt percent rGO)were obtained at relatively low filler loadings. The integrated strain sensing capabilities based on the rGO network were explored with good sensitivity and repeatability. Joule heating was performed as a potential application for de-icing of multifunctional composite components with good heating capability from ?20?°C to 20?°C within 2?min.
GRAPHENE
EPOXY
PERCOLATION
ELECTRICAL CONDUCTIVITY
MECHANICAL PROPERTIES
SENSING
DE-ICING
The network formation of reduced graphene oxide (rGO)within an epoxy resin during curing has been in-situ visualised for the first time, with its effect on electrical, mechanical, and multifunctional properties of these nanocomposites explored. Different initial states of dispersion and filler contents were employed to examine the nanofiller network formation process. Good electrical conductivity (10?3?S/m at 0.05?wt percent rGO)together with good mechanical reinforcement (12 percent increase in flexural modulus at 0.2?wt percent rGO)were obtained at relatively low filler loadings. The integrated strain sensing capabilities based on the rGO network were explored with good sensitivity and repeatability. Joule heating was performed as a potential application for de-icing of multifunctional composite components with good heating capability from ?20?°C to 20?°C within 2?min.
GRAPHENE
EPOXY
PERCOLATION
ELECTRICAL CONDUCTIVITY
MECHANICAL PROPERTIES
SENSING
DE-ICING
