Principles of Statistical Genomics (Record no. 58168)

MARC details
000 -LEADER
fixed length control field 09339nam a22004095i 4500
001 - CONTROL NUMBER
control field 978-0-387-70807-2
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250710084011.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 120913s2013 xxu| s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780387708072
-- 99780387708072
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1007/978-0-387-70807-2
Source of number or code doi
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 581.35
Edition information 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Xu, Shizhong.
Relator term author.
245 10 - TITLE STATEMENT
Title Principles of Statistical Genomics
Medium [recurso electrónico] /
Statement of responsibility, etc. by Shizhong Xu.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture New York, NY :
Name of producer, publisher, distributor, manufacturer Springer New York :
-- Imprint: Springer,
Date of production, publication, distribution, manufacture, or copyright notice 2013.
300 ## - PHYSICAL DESCRIPTION
Extent XV, 428 p. 46 illus., 12 illus. in color.
Other physical details online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term recurso en línea
Carrier type code cr
Source rdacarrier
347 ## - DIGITAL FILE CHARACTERISTICS
File type text file
Encoding format PDF
Source rda
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Genetic Linkage Map -- Map Functions -- Physical map and genetic map -- Derivation of map functions -- Haldane map function -- Kosambi map function -- Recombination Fraction -- Mating designs -- Maximum likelihood estimation of recombination fraction -- Standard error and significance test -- Fisher's scoring algorithm for estimating -- EM algorithm for estimating -- Genetic Map Construction -- Criteria of optimality -- Search algorithms -- Exhaustive search -- Heuristic search -- Simulated annealing -- Branch and bound -- Bootstrap confidence of a map -- Multipoint Analysis of Mendelian Loci -- Joint distribution of multiple locus genotype -- BC design -- F2 design -- Four-way cross design -- Incomplete genotype information -- Partially informative genotype -- BC and F2 are special cases of FW -- Dominance and missing markers -- Conditional probability of a missing marker genotype -- Joint estimation of recombination fractions -- Multipoint analysis for m markers -- Map construction with unknown recombination fractions -- Basic Concepts of Quantitative Genetics -- Gene frequency and genotype frequency -- Genetic effects and genetic variance -- Average effect of allelic substitution -- Genetic variance components -- Heritability -- An F2 family is in Hardy-Weinberg equilibrium -- Major Gene Detection -- Estimation of major gene effect -- BC design -- F2 design -- Hypothesis tests -- BC design -- F2 design -- Scale of the genotype indicator variable -- Statistical power -- Type I error and statistical power -- Wald-test statistic -- Size of a major gene -- Relationship between W-test and Z-test -- Extension to dominance effect -- Segregation Analysis -- Gaussian mixture distribution -- EM algorithm -- Closed form solution -- EM steps -- Derivation of the EM algorithm -- Proof of the EM algorithm -- Hypothesis tests -- Variances of estimated parameters -- Estimation of the mixing proportions -- Genome Scanning for Quantitative Trait Loci -- The mouse data -- Genome scanning -- Missing genotypes -- Test statistics -- Bonferroni correction -- Permutation test -- Piepho's approximate critical value -- Theoretical consideration -- Interval Mapping -- Least squares method -- Weighted least squares -- Fisher scoring -- Maximum likelihood method -- EM algorithm -- Variance-covariance matrix of ˆθ -- Hypothesis test -- Remarks on the four methods of interval mapping -- Interval Mapping for Ordinal Traits -- Generalized linear model -- ML under homogeneous variance -- ML under heterogeneous variance -- ML under mixture distribution -- ML via the EM algorithm -- Logistic analysis -- Example -- Mapping Segregation Distortion Loci -- Probabilistic model -- The EM Algorithm -- Hypothesis test -- Variance matrix of the estimated parameters -- Selection coefficient and dominance -- Liability model -- EM algorithm -- Variance matrix of estimated parameters -- Hypothesis test -- Mapping QTL under segregation distortion -- Joint likelihood function -- EM algorithm -- Variance-covariance matrix of estimated parameters -- Hypothesis tests -- Example -- QTL Mapping in Other Populations -- Recombinant inbred lines -- Double haploids -- Four-way crosses -- Full-sib family -- F2 population derived from outbreds -- Example -- Random Model Approach to QTL Mapping -- Identity-by-descent (IBD) -- Random effect genetic model -- Sib-pair regression.-  Maximum likelihood estimation -- EM algorithm -- EM algorithm under singular value decomposition -- Multiple siblings -- Estimating the IBD value for a marker -- Multipoint method for estimating the IBD value -- Genome scanning and hypothesis tests -- Multiple QTL model -- Complex pedigree analysis -- Mapping QTL for Multiple Traits -- Multivariate model -- EM algorithm for parameter estimation -- Hypothesis tests -- Variance matrix of estimated parameters -- Derivation of the EM algorithm -- Example -- Bayesian Multiple QTL Mapping -- Bayesian regression analysis -- Markov chain Monte Carlo -- Mapping multiple QTL -- Multiple QTL model -- Prior, likelihood and posterior -- Summary of the MCMC process -- Post MCMC analysis -- Alternative methods of Bayesian mapping -- Reversible jump MCMC -- Stochastic search variable selection -- Lasso and Bayesian Lasso -- Example: Arabidopsis data -- Empirical Bayesian QTL Mapping -- Classical mixed model -- Simultaneous updating for matrix G -- Coordinate descent method -- Block coordinate descent method -- Bayesian estimates of QTL effects -- Hierarchical mixed model -- Inverse chi-square prior -- Exponential prior -- Dealing with sparse models -- Infinitesimal model for whole genome sequence data -- Data trimming -- Concept of continuous genome -- Example: Simulated data -- Microarray Differential Expression Analysis -- Data preparation -- Data transformation -- Data normalization -- F-test and t-test -- Type I error and false discovery rate -- Selection of differentially expressed genes -- Permutation test -- Selecting genes by controlling FDR -- Problems of the previous methods -- Regularized t-test -- General linear model -- Fixed model approach -- Random model approach -- Hierarchical Clustering of Microarray Data -- Distance matrix -- UPGMA -- Neighbor joining -- Principle of neighbor joining -- Computational algorithm -- Other methods -- Bootstrap confidence -- Model-Based Clustering of Microarray Data -- Cluster analysis with the K-means method -- Cluster analysis under Gaussian mixture -- Multivariate Gaussian distribution -- Mixture distribution -- The EM algorithm -- Supervised cluster analysis -- Semi-supervised cluster analysis -- Inferring the number of clusters -- Microarray experiments with replications -- Gene Specific Analysis of Variances -- General linear model -- The SEM algorithm -- Hypothesis testing -- Factor Analysis of Microarray Data -- Background of factor analysis -- Linear model of latent factors -- EM algorithm -- Number of factors -- Cluster analysis -- Differential expression analysis -- MCMC algorithm -- Classification of Tissue Samples Using Microarrays -- Logistic regression -- Penalized logistic regression -- The coordinate descent algorithm -- Cross validation -- Prediction of disease outcome -- Multiple category classification -- Time-Course Microarray Data Analysis -- Gene expression profiles -- Orthogonal polynomial -- B-spline -- Mixed effect model -- Mixture mixed model -- EM algorithm -- Best linear unbiased prediction -- SEM algorithm -- Monte Carlo sampling -- SEM steps -- Quantitative Trait Associated Microarray Data Analysis -- Linear association -- Linear model -- Cluster analysis -- Three-cluster analysis -- Differential expres -- SEM algorithm -- MCMC algorithm -- Joint analysis of all markers -- Multiple eQTL model -- SEM algorithm -- MCMC algorithm -- Hierarchical evolutionary stochastic search (HESS).
520 ## - SUMMARY, ETC.
Summary, etc. Statistical genomics is a rapidly developing field, with more and more people involved in this area. However, a lack of synthetic reference books and textbooks in statistical genomics has become a major hurdle to the development of the field. Although many books have been published recently in bioinformatics, most of them emphasize DNA sequence analysis under a deterministic approach. Principles of Statistical Genomics synthesizes the state-of-the-art statistical methodologies (stochastic approaches) applied to genome study. It facilitates understanding of the statistical models and methods behind the major bioinformatics software packages, which will help researchers choose the optimal algorithm to analyze their data and better interpret the results of their analyses. Understanding existing statistical models and algorithms assists researchers to develop improved statistical methods to extract maximum information from their data. Resourceful and easy to use, Principles of Statistical Genomics is a comprehensive reference for researchers and graduate students studying statistical genomics. 
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element LIFE SCIENCES.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element PLANT BREEDING.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element ANIMAL GENETICS.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element LIFE SCIENCES.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element PLANT GENETICS & GENOMICS.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element ANIMAL GENETICS AND GENOMICS.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer eBooks
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9780387708065
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://dx.doi.org/10.1007/978-0-387-70807-2">http://dx.doi.org/10.1007/978-0-387-70807-2</a>
Public note Ver el texto completo en las instalaciones del CICY
912 ## -
-- ZDB-2-SBL
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Libros electrónicos
Holdings
Lost status Source of classification or shelving scheme Damaged status Not for loan Collection Home library Current library Shelving location Date acquired Total checkouts Full call number Date last seen Price effective from Koha item type
  Dewey Decimal Classification     Libro electrónico CICY CICY Libro electrónico 10.07.2025   581.35 10.07.2025 10.07.2025 Libros electrónicos