Image from Google Jackets

Pilot-plant and laboratory studies on vapor permeation removal of VOCs from waste gas using silicone-coated hollow fibers

Tipo de material: TextoTextoSeries ; Journal of Membrane Science, 167(1), p.107-122, 2000Trabajos contenidos:
  • Bhaumik, D
  • Majumdar, S
  • Sirkar, K.K
Tema(s): Recursos en línea: Resumen: In a recent bench-scale study the vapor permeation-based removal of individual volatile organic compounds (VOCs), e.g. methanol, toluene from an N2 stream was studied using microporous polypropylene hollow fibers having a plasma polymerized silicone coating on the outside surface of the fiber. The novel vapor permeation process employed bore-side feed flow and vacuum on the shell-side. The observed separation behavior was described successfully by an analytical solution of a simpler model and by a numerical solution of a more extensive set of model equations based on experimentally-determined behavior of concentration-dependent VOC permeance. The remarkably high separation performance achieved in that study on a bench-scale has led to pilot-plant studies using a larger module. Results of pilot-plant studies using streams containing high concentrations of VOCs, (e.g. 1-8
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-6318 (Browse shelf(Opens below)) Available

In a recent bench-scale study the vapor permeation-based removal of individual volatile organic compounds (VOCs), e.g. methanol, toluene from an N2 stream was studied using microporous polypropylene hollow fibers having a plasma polymerized silicone coating on the outside surface of the fiber. The novel vapor permeation process employed bore-side feed flow and vacuum on the shell-side. The observed separation behavior was described successfully by an analytical solution of a simpler model and by a numerical solution of a more extensive set of model equations based on experimentally-determined behavior of concentration-dependent VOC permeance. The remarkably high separation performance achieved in that study on a bench-scale has led to pilot-plant studies using a larger module. Results of pilot-plant studies using streams containing high concentrations of VOCs, (e.g. 1-8

There are no comments on this title.

to post a comment.