Image from Google Jackets

Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials

Tipo de material: TextoTextoSeries ; Journal of Biomedical Materials Research, 48(3), p.342-353, 1999Trabajos contenidos:
  • Li, S
Tema(s): Recursos en línea: Resumen: During the past decade, important advances have been made in the understanding of the hydrolytic degradation characteristics of aliphatic polyesters derived from lactic acid (LA) and glycolic acid (GA). Degradation of large poly(LAGA) (PLAGA) polymers is autocatalyzed by carboxyl end groups initially present or generated upon ester bond cleavage. Faster internal degradation and degradation-induced morphological and compositional changes are three of the most important findings deduced from the behaviors of various PLAGA polymers. This review presents the state of the art in this domain. The research efforts are focused on detailing the degradation mechanism and the effects of various factors on the degradation of PLAGA polymers. An attempt is also made to elaborate a scheme that can be used to predict degradation characteristics of these polymers from their initial composition and morphology.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-8184 (Browse shelf(Opens below)) Available

Artículo

During the past decade, important advances have been made in the understanding of the hydrolytic degradation characteristics of aliphatic polyesters derived from lactic acid (LA) and glycolic acid (GA). Degradation of large poly(LAGA) (PLAGA) polymers is autocatalyzed by carboxyl end groups initially present or generated upon ester bond cleavage. Faster internal degradation and degradation-induced morphological and compositional changes are three of the most important findings deduced from the behaviors of various PLAGA polymers. This review presents the state of the art in this domain. The research efforts are focused on detailing the degradation mechanism and the effects of various factors on the degradation of PLAGA polymers. An attempt is also made to elaborate a scheme that can be used to predict degradation characteristics of these polymers from their initial composition and morphology.

There are no comments on this title.

to post a comment.