Image from Google Jackets

Experimental evaluation of residual stresses in single fibre composites by means of the fragmentation test

Tipo de material: TextoTextoSeries ; Journal of Materials Science, 31(4), p.2385-2392, 1996Trabajos contenidos:
  • Detassis, M
  • Pegoretti, A
  • Migliaresi, C
  • Wagner, H.D
Recursos en línea: Resumen: The residual stresses in both thermosetting and thermoplastic single-fibre composites have been experimentally evaluated by means of an original technique based on the continuous monitoring of the fragmentation test performed at various temperatures. The difference between the strain at the break of a single fibre in air and one embedded in a polymeric matrix has been measured as a function of temperature. By considering the compressive fibre modulus this strain difference has been converted into fibre compressive stresses related to the matrix thermal shrinkage after curing of the samples. In fact, as the test temperature increased, the thermal compressive stresses decreased until a zero value was obtained, corresponding to a so called "stress free temperature", equal to the curing temperature for amorphous thermosetting matrix composites or equal to the matrix melting temperature for semicrystalline-thermoplastic matrix composites. The experimental results have been compared with data obtained from a theoretical model and a good agreement was found especially if the temperature dependence of the matrix Young's modulus and matrix thermal expansion coefficient are accounted for in the computation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-8540 (Browse shelf(Opens below)) Available

The residual stresses in both thermosetting and thermoplastic single-fibre composites have been experimentally evaluated by means of an original technique based on the continuous monitoring of the fragmentation test performed at various temperatures. The difference between the strain at the break of a single fibre in air and one embedded in a polymeric matrix has been measured as a function of temperature. By considering the compressive fibre modulus this strain difference has been converted into fibre compressive stresses related to the matrix thermal shrinkage after curing of the samples. In fact, as the test temperature increased, the thermal compressive stresses decreased until a zero value was obtained, corresponding to a so called "stress free temperature", equal to the curing temperature for amorphous thermosetting matrix composites or equal to the matrix melting temperature for semicrystalline-thermoplastic matrix composites. The experimental results have been compared with data obtained from a theoretical model and a good agreement was found especially if the temperature dependence of the matrix Young's modulus and matrix thermal expansion coefficient are accounted for in the computation.

There are no comments on this title.

to post a comment.