The Yeast Signal Sequence Trap Identifies Secreted Proteins of the Hemibiotrophic Corn Pathogen Colletotrichum graminicola
Tipo de material:
TextoSeries ; Molecular Plant-Microbe Interactions, 21(10), p.1325-1336, 2008Trabajos contenidos: - Krijger, J.J
- Horbach, R
- Behr, M
- Schweizer, P
- Deising, H.B
- Wirsel, S.G.R
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-10506 (Browse shelf(Opens below)) | Available |
The hemibiotroph Colletotrichum graminicola is the causal agent of stem rot and leaf anthracnose on Zea mays. Following penetration of epidermal cells, the fungus enters a short biotrophic phase, followed by a destructive necrotrophic phase of pathogenesis. During both phases, secreted fungal proteins are supposed to determine progress and success of the infection. To identify genes encoding such proteins, we constructed a yeast signal sequence trap (YSST)cDNA-library from RNA extracted from mycelium grown in vitro on corn cell walls and leaf extract. Of the 103 identified unigenes, 50 showed significant similarities to genes with a reported function, 25 sequences were similar to genes without a known function, and 28 sequences showed no similarity to entries in the databases. Macroarray hybridization and quantitative reverse-transcriptase polymerase chain reaction confirmed that most genes identified by the YSST screen are expressed in planta. Other than some genes that were constantly expressed, a larger set showed peaks of transcript abundances at specific phases of pathogenesis. Another set exhibited biphasic expression with peaks at the biotrophic and necrotrophic phase. Transcript analyses of in vitro-grown cultures revealed that several of the genes identified by the YSST screen were induced by the addition of corn leaf components, indicating that host-derived factors may have mimicked the host milieu.
There are no comments on this title.
