Image from Google Jackets

Overexpression of (At)NPR1 in Rice Leads to a BTH- and Environment-Induced Lesion-Mimic/Cell Death Phenotype

Tipo de material: TextoTextoSeries ; Molecular Plant-Microbe Interactions, 17(2), p.140-151, 2004Trabajos contenidos:
  • Fitzgerald, H.A
  • Chern, M.S
  • Navarre, R
  • Ronald, P.C
Recursos en línea: Resumen: Systemic acquired resistance (SAR)is an inducible defense response that protects plants against a broad spectrum of pathogens. A central regulator of SAR in Arabidopsis is NPR1 (nonexpresser of pathogenesis-related genes). In rice, overexpression of Arabidopsis NPR1 enhances plant resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. This report demonstrates that overexpression of (At)NPR1 in rice also triggers a lesion-mimic/cell death (LMD)phenotype. The LMD phenotype is environmentally regulated and heritable. In addition, the development of lesions and death correlates with the expression of rice defense genes and the accumulation of hydrogen peroxide. Application of the salicylic acid (SA)analog, benzo(1,2,3)thiadiazole-7-carbothioc acid S-methyl ester (BTH), potentiates this phenotype. Endogenous SA levels are reduced in rice overexpressing (At)NPR1 when compared with wildtype plants, supporting the idea that (At)NPR1 may perceive and modulate the accumulation of SA. The association of (At)NPR1 expression in rice with the development of an LMD phenotype suggests that (At)NPR1 has multiple roles in plant stress responses that may affect its efficacy as a transgenic tool for engineering broad-spectrum resistance.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-11328 (Browse shelf(Opens below)) Available

Systemic acquired resistance (SAR)is an inducible defense response that protects plants against a broad spectrum of pathogens. A central regulator of SAR in Arabidopsis is NPR1 (nonexpresser of pathogenesis-related genes). In rice, overexpression of Arabidopsis NPR1 enhances plant resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. This report demonstrates that overexpression of (At)NPR1 in rice also triggers a lesion-mimic/cell death (LMD)phenotype. The LMD phenotype is environmentally regulated and heritable. In addition, the development of lesions and death correlates with the expression of rice defense genes and the accumulation of hydrogen peroxide. Application of the salicylic acid (SA)analog, benzo(1,2,3)thiadiazole-7-carbothioc acid S-methyl ester (BTH), potentiates this phenotype. Endogenous SA levels are reduced in rice overexpressing (At)NPR1 when compared with wildtype plants, supporting the idea that (At)NPR1 may perceive and modulate the accumulation of SA. The association of (At)NPR1 expression in rice with the development of an LMD phenotype suggests that (At)NPR1 has multiple roles in plant stress responses that may affect its efficacy as a transgenic tool for engineering broad-spectrum resistance.

There are no comments on this title.

to post a comment.