The efects of glass-Rber sizings on the strength and energy absorption of the Rber/matrix interphase under high loading rates
Tipo de material:
TextoSeries ; Composites Science and Technology, 61(2), p.205-220, 2001Trabajos contenidos: - Tanoglu, M
- Mcknight, S.H
- Palmese, G.R
- Gillespie Jr., J.W
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-11884 (Browse shelf(Opens below)) | Available |
The interphases of various sized E-glass-®ber/epoxy-amine systems were tested at displacement rates in the range 230±2450 mm/s by a new experimental technique (dynamic micro-debonding technique). By this method, the rate-dependent interphase properties, apparent shear strength and absorbed energies due to debonding and frictional sliding, were quanti®ed. The systems include unsized, epoxy-amine compatible, and epoxy-amine incompatible glass ®bers. The high displacement rates that induce high-strain-rate interphase loading were obtained by using the rapid expansion capability of piezoelectric actuators (PZT). The results of dynamic micro-debonding experiments showed that the values of interphase strength and speci®c absorbed energies varied in a manner that is dependent on the sizing and exhibited signi®cant sensitivity to loading rates. The unsized ®bers exhibit greater frictional sliding energies that could provide better ballistic resistance, while the compatible sized ®bers show higher strength values that improve the structural integrity of the polymeric composites. In addition, signi®cantly higher amounts of energy are absorbed within the frictional sliding regime compared to debonding. By using the experimental data obtained, a case study was performed to reveal the importance of the interphase related micro damage modes on energy absorption (and therefore ballistic performance)of glass/epoxy composite armor
There are no comments on this title.
