Electrically Conductive Carbon Black/Poly(ethylene terephthalate)/polyethylene Microfibrillar Composite: The influence of CaCO3 Nanoparticles
Tipo de material:
TextoSeries ; Polymer-Plastics Technology and Engineering, 47(7), p.726-732, 2008Trabajos contenidos: - Li, B
- Li, Z.M
- Xu, X.B
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-12188 (Browse shelf(Opens below)) | Available |
The influence of a complex filler system on the electrical properties of a microfibrillar conductive polymer composite (MCPC)is discussed. By adding insulating filler, nano-CaCO3, to carbon black (CB)-filled MCPC, the morphology of the poly(ethylene terephthalate)(PET)microfibrillar phase was tailored according to the ratio of CB/nano-CaCO3, and so were the electrical properties of MCPC. It was found that nano-CaCO3 did not influence electrical properties in a monotone way. With an increase in nano-CaCO3 content, on one hand, the surface of the microfibrils became smoother, which jeopardized the conductivity of the MCPC. At the same time, the nano-CaCO3 particles substituted for the CB particles on the surface of the microfibrils and further decreased conductivity. On the other hand, longer and better-defined microfibrils could form, which enhanced the conductive network and increased the conductivity of the MCPC. As a result, the percolation threshold changed little compared to the common CB-filled MCPC.
There are no comments on this title.
