Image from Google Jackets

Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels

Tipo de material: TextoTextoSeries ; Current Opinion in Plant Biology, 7(3), p.318-322, 2004Trabajos contenidos:
  • Huber, S.C
  • Hardin, S.C
Recursos en línea: Resumen: The metabolic plasticity displayed by plants during normal development, and in response to environmental fluctuations and stressors, is essential for their growth and survival. The capacity to regulate metabolic enzymes intricately arises in part from posttranslational modifications that can affect enzymatic activity, intracellular localization, protein-protein interactions, and stability. Protein phosphorylation and thiol/disulfide redox modulation are important modifications in plants, and it is likely that O-glycosylation and S-nitrosylation will also emerge as important mechanisms. Recent advances in the field of proteomics, in particular the development of novel and specific chemistries for the detection of a diverse number of modifications, are rapidly expanding our awareness of possible modifications and our understanding of the enzymes whose functions are likely to be regulated posttranslationally.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-13094 (Browse shelf(Opens below)) Available

The metabolic plasticity displayed by plants during normal development, and in response to environmental fluctuations and stressors, is essential for their growth and survival. The capacity to regulate metabolic enzymes intricately arises in part from posttranslational modifications that can affect enzymatic activity, intracellular localization, protein-protein interactions, and stability. Protein phosphorylation and thiol/disulfide redox modulation are important modifications in plants, and it is likely that O-glycosylation and S-nitrosylation will also emerge as important mechanisms. Recent advances in the field of proteomics, in particular the development of novel and specific chemistries for the detection of a diverse number of modifications, are rapidly expanding our awareness of possible modifications and our understanding of the enzymes whose functions are likely to be regulated posttranslationally.

There are no comments on this title.

to post a comment.