Sensitive detection of Xanthomonas axonopodis pv. dieffenbachiae on Anthurium andreanum by immunocapture-PCR (IC-PCR)using primers designed from sequence characterized amplified regions (SCAR)of the blight pathogen
Tipo de material:
TextoSeries ; European Journal of Plant Pathology, 112(4), p.379-390, 2005Trabajos contenidos: - Khoodoo, M.H.R
- Sahin, F
- Jaufeerally-Fakim, Y
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-13181 (Browse shelf(Opens below)) | Available |
One of the most devastating Xanthomonas diseases affecting the Anthurium cut flower industry worldwide is the bacterial blight caused by Xanthomonas axonopodis pv. dieffenbachiae (Xad). The disease can be spread through latently infected tissue-cultured plants that are used for the propagation of Anthurium worldwide. Current disease diagnostic techniques involve the use of semi-selective media and serological tests. This study describes the development of a PCR tool combined with a genus-specific monoclonal antibody for the sensitive detection of the pathogen directly from plants. It was demonstrated that the immunocapture PCR (IC-PCR)was more sensitive than the conventional PCR and even more sensitive than indirect ELISA for the detection of the pathogen. Latently infected plants could be positively screened for the presence of the pathogen. Three sets of primers were designed from DNA probes that were reported to show some specificity to the pathovar dieffenbachiae. The use of all three sets of primers in a single reaction successfully a mplified the three individual loci when bacterial DNA was used as a template. The multiplex PCR generated PCR profiles that could differentiate between the reference strains of X. axonopodis pv. dieffenbachiae from other control bacteria. The new primers could therefore be used both for the diagnosis of Anthurium blight in single PCR reactions and also for the profiling of Xanthomonas. pv. dieffenbachiae strains using the multiplex PCR technique.
There are no comments on this title.
