Image from Google Jackets

Photoperiodic control of cytokinin transport and metabolism in Chenopodium rubrum

Tipo de material: TextoTextoSeries ; Physiologia Plantarum, 98(3), p.564-570, 1996Trabajos contenidos:
  • Machackova, I
  • Eder, J
  • Motyka, V
  • Hanus, J
  • Krekule, J
Tema(s): Recursos en línea: Resumen: Cytokinin (CK)levels in the short-day plant Chenopodium rubrum L. are known to fluctuate diurnally. The aim of this work was to investigate if the diurnal changes are brought about by changes in transport and/or metabolism of CKs. The effect of photoperiod on cytokinin transport was studied by analysing CK concentrations in root, leaf and apical exudates, respectively, under constant light (CL), a 12-h photoperiod (DL)inductive for flowering, DL in which darkness was interrupted at the end of hour 6 by 15 min red light (R), or by 15 min R followed by 30 min far-red irradiation (R/FR). The concentrations of cytokinins (zeatin, zeatin riboside, isopentenyladenine, isopentenyladenosine)in all three types of exudates were significantly higher in the first 12-h period after the end of 12 h darkness than in CL. The R break almost fully negated the effect of darkness and its effect was reversed by FR, showing the involvement of phytochrome in the regulation of CK transport. In the next 12-h interval, i.e. 12-24 h after the end of darkness, the CK level remained high in the leaf exudate only, but to a much lower extent than in the previous 12 h. The highest CK concentration (increase by 108 per cent)was observed in apical exudates during inductive darkness. A comparison of the CKs present in the individual exudates indicates that those arriving at the apical part are derived mostly from leaves with varying contributions by the xylem. The metabolism of applied [3H]-zeatin riboside (ZR)was studied using HPLC separation of the metabolites. Metabolism was found to be very rapid and different glucosides, adenine and adenosine were the main metabolites after 12 h incubation with labelled ZR in all regimes tested. The only metabolite that seems to be under photoperiodic control is ZR-5'-monophosphate. It is as yet not clear if photoperiod controls the phosphorylation or dephosphorylation reaction. The activity of the main cytokinin degradative enzyme, cytokinin oxidase, did not change during the photoperiodic regimes tested.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-16221 (Browse shelf(Opens below)) Available

Cytokinin (CK)levels in the short-day plant Chenopodium rubrum L. are known to fluctuate diurnally. The aim of this work was to investigate if the diurnal changes are brought about by changes in transport and/or metabolism of CKs. The effect of photoperiod on cytokinin transport was studied by analysing CK concentrations in root, leaf and apical exudates, respectively, under constant light (CL), a 12-h photoperiod (DL)inductive for flowering, DL in which darkness was interrupted at the end of hour 6 by 15 min red light (R), or by 15 min R followed by 30 min far-red irradiation (R/FR). The concentrations of cytokinins (zeatin, zeatin riboside, isopentenyladenine, isopentenyladenosine)in all three types of exudates were significantly higher in the first 12-h period after the end of 12 h darkness than in CL. The R break almost fully negated the effect of darkness and its effect was reversed by FR, showing the involvement of phytochrome in the regulation of CK transport. In the next 12-h interval, i.e. 12-24 h after the end of darkness, the CK level remained high in the leaf exudate only, but to a much lower extent than in the previous 12 h. The highest CK concentration (increase by 108 per cent)was observed in apical exudates during inductive darkness. A comparison of the CKs present in the individual exudates indicates that those arriving at the apical part are derived mostly from leaves with varying contributions by the xylem. The metabolism of applied [3H]-zeatin riboside (ZR)was studied using HPLC separation of the metabolites. Metabolism was found to be very rapid and different glucosides, adenine and adenosine were the main metabolites after 12 h incubation with labelled ZR in all regimes tested. The only metabolite that seems to be under photoperiodic control is ZR-5'-monophosphate. It is as yet not clear if photoperiod controls the phosphorylation or dephosphorylation reaction. The activity of the main cytokinin degradative enzyme, cytokinin oxidase, did not change during the photoperiodic regimes tested.

There are no comments on this title.

to post a comment.