Image from Google Jackets

Functional Nanocomposites Based on Fibrous Clays

Tipo de material: TextoTextoSeries ; RSC Smart Materials, 22, p.1-53, 2017Trabajos contenidos:
  • Ruiz-Hitzky, E
  • Darder, M
  • Alcântara, A.C.S
  • Wicklein, B
  • Aranda, P
Tema(s): Recursos en línea: Resumen: This chapter is focused on functional nanocomposites based on the use of the microfibrous clays sepiolite and palygorskite as efficient fillers for diverse types of polymer matrices, from typical thermoplastics to biopolymers. The main features that govern the interaction between the silicates and the polymer matrix are discussed. The introduction addresses the structural and textural features of the fibrous silicates, as well as the possible synthetic approaches to increase the compatibility of these nanofillers with the polymeric matrix. Additionally, these clays can be easily functionalized through their surface silanol groups based on chemical reactions or by anchoring of nanoparticles. This allows for the preparation of a wide variety of functional polymer-clay nanocomposites. Thereafter, some relevant examples of nanocomposites derived from conventional polymers are reported, as well as of those based on polymers that exhibit electrical conductivity. Lastly, selected works employing sepiolite or palygorskite as fillers in polymeric matrixes of natural origin are discussed, showing the wide application of these resulting nanocomposites as bioplastics, as well as in biomedicine, environmental remediation and the development of sensor devices.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-16650 (Browse shelf(Opens below)) Available

This chapter is focused on functional nanocomposites based on the use of the microfibrous clays sepiolite and palygorskite as efficient fillers for diverse types of polymer matrices, from typical thermoplastics to biopolymers. The main features that govern the interaction between the silicates and the polymer matrix are discussed. The introduction addresses the structural and textural features of the fibrous silicates, as well as the possible synthetic approaches to increase the compatibility of these nanofillers with the polymeric matrix. Additionally, these clays can be easily functionalized through their surface silanol groups based on chemical reactions or by anchoring of nanoparticles. This allows for the preparation of a wide variety of functional polymer-clay nanocomposites. Thereafter, some relevant examples of nanocomposites derived from conventional polymers are reported, as well as of those based on polymers that exhibit electrical conductivity. Lastly, selected works employing sepiolite or palygorskite as fillers in polymeric matrixes of natural origin are discussed, showing the wide application of these resulting nanocomposites as bioplastics, as well as in biomedicine, environmental remediation and the development of sensor devices.

There are no comments on this title.

to post a comment.