Image from Google Jackets

Structure and Function of Eukaryotic DNA Methyltransferases

Tipo de material: TextoTextoSeries ; Current Topics in Developmental Biology, 60, p.55-89, 2004Trabajos contenidos:
  • Chen, T
  • Li, E
Tema(s): Recursos en línea: Resumen: DNA methylation is a common epigenetic modification found in eukaryotic organisms ranging from fungi to mammals. Over the past 15 years, a number of eukaryotic DNA methyltransferases have been identified from various model organisms. These enzymes exhibit distinct biochemical properties and biological functions, partly due to their structural differences. The highly variable N-terminal extensions of these enzymes harbor various evolutionarily conserved domains and motifs, some of which have been shown to be involved in functional specializations. DNA methylation has divergent functions in different organisms, consistent with the notion that it is a dynamically evolving mechanism that can be adapted to fulfill various functions. Genetic studies using model organisms have provided evidence suggesting the progressive integration of DNA methylation into eukaryotic developmental programs during evolution.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-16758 (Browse shelf(Opens below)) Available

DNA methylation is a common epigenetic modification found in eukaryotic organisms ranging from fungi to mammals. Over the past 15 years, a number of eukaryotic DNA methyltransferases have been identified from various model organisms. These enzymes exhibit distinct biochemical properties and biological functions, partly due to their structural differences. The highly variable N-terminal extensions of these enzymes harbor various evolutionarily conserved domains and motifs, some of which have been shown to be involved in functional specializations. DNA methylation has divergent functions in different organisms, consistent with the notion that it is a dynamically evolving mechanism that can be adapted to fulfill various functions. Genetic studies using model organisms have provided evidence suggesting the progressive integration of DNA methylation into eukaryotic developmental programs during evolution.

There are no comments on this title.

to post a comment.