Image from Google Jackets

Characterisation of halloysite by spectroscopy.

Tipo de material: TextoTextoSeries ; In Developments in Clay Science. Elsevier., 7, p.115-136)., 2016Trabajos contenidos:
  • Kloprogge, J. T
Tema(s): Recursos en línea: Resumen: This chapter provides an overview of results obtained by a variety of spectroscopic techniques. The most common techniques employed are infrared (IR)and Raman spectroscopy, which enable detailed observation of the behaviour of water and OH-groups and the type of H-bonds formed. The inner-surface OH-groups that normally form H-bonds with adjacent layers in the kaolins and form H-bonds with water in the interlayer in halloysite. Infrared emission spectroscopy showed that the four inner and inner-surface OH-groups were removed at different temperatures, at different rates, or both. A slight increase in the Al 2p binding energy observed in the spectra of X-ray photoelectron spectroscopy from kaolinite to halloysite reflects a change in the stacking order due to the interlayer water. The overall shape of the O 1s is indicative of two peaks associated with the oxygen atoms and with the OH-groups. A third, very weak peak was observed to be associated with interlayer water that is still present despite the ultrahigh vacuum.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-18429 (Browse shelf(Opens below)) Available

This chapter provides an overview of results obtained by a variety of spectroscopic techniques. The most common techniques employed are infrared (IR)and Raman spectroscopy, which enable detailed observation of the behaviour of water and OH-groups and the type of H-bonds formed. The inner-surface OH-groups that normally form H-bonds with adjacent layers in the kaolins and form H-bonds with water in the interlayer in halloysite. Infrared emission spectroscopy showed that the four inner and inner-surface OH-groups were removed at different temperatures, at different rates, or both. A slight increase in the Al 2p binding energy observed in the spectra of X-ray photoelectron spectroscopy from kaolinite to halloysite reflects a change in the stacking order due to the interlayer water. The overall shape of the O 1s is indicative of two peaks associated with the oxygen atoms and with the OH-groups. A third, very weak peak was observed to be associated with interlayer water that is still present despite the ultrahigh vacuum.

There are no comments on this title.

to post a comment.