Image from Google Jackets

Development and application of micromechanical techniques for characterising interfacial shear strength in fibre-thermoplastic composites.

Tipo de material: TextoTextoSeries ; Polymer Testing, 31(7), p.895-903, 2012Trabajos contenidos:
  • Yang, L
  • Thomason, J. L
Tema(s): Recursos en línea: Resumen: The development of single fibre pull-out and microbond tests for characterising interfacial strength in thermoplastic composites is reviewed in detail. Manufacture of an experimental jig and sample preparation regimes for both tests are described. The challenges addressed in the sample preparation include the measurement of embedded fibre length for pull-out samples and the low yield rate of axisymmetric resin droplets obtained during sample preparation under nitrogen. The applications of these laboratory developed techniques are demonstrated by characterisation of the interfacial shear strength (IFSS)of glass fibre-polypropylene (GF-PP)and natural fibre-polylactic acid (NF-PLA). The comparison of the IFSS between neat and modified GF-PP showed that both methods were sensitive to the interfacial performance change despite the poor agreement between them for the absolute IFSS values from the same composite. The effect of the material modification was also reflected in load-displacement curves with different behaviour of the frictional motion after complete debonding. When a high level of fibre-matrix adhesion was realised in the composites with weak fibres, the microbond test showed higher feasibility for characterising the IFSS. This was clearly shown in its application to NF-PLA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-18620 (Browse shelf(Opens below)) Available

The development of single fibre pull-out and microbond tests for characterising interfacial strength in thermoplastic composites is reviewed in detail. Manufacture of an experimental jig and sample preparation regimes for both tests are described. The challenges addressed in the sample preparation include the measurement of embedded fibre length for pull-out samples and the low yield rate of axisymmetric resin droplets obtained during sample preparation under nitrogen. The applications of these laboratory developed techniques are demonstrated by characterisation of the interfacial shear strength (IFSS)of glass fibre-polypropylene (GF-PP)and natural fibre-polylactic acid (NF-PLA). The comparison of the IFSS between neat and modified GF-PP showed that both methods were sensitive to the interfacial performance change despite the poor agreement between them for the absolute IFSS values from the same composite. The effect of the material modification was also reflected in load-displacement curves with different behaviour of the frictional motion after complete debonding. When a high level of fibre-matrix adhesion was realised in the composites with weak fibres, the microbond test showed higher feasibility for characterising the IFSS. This was clearly shown in its application to NF-PLA.

There are no comments on this title.

to post a comment.