Image from Google Jackets

Size-dependence of the dielectric breakdown strength from nano- to millimeter scale

Tipo de material: TextoTextoSeries ; Journal of the Mechanics and Physics of Solids, 63, p.201-213, 2014Trabajos contenidos:
  • Neusel, C
  • Schneider, G. A
Tema(s): Recursos en línea: Resumen: Dielectric breakdown decisively determines the reliability of nano- to centimeter sized electronic devices and components. Nevertheless, a systematic investigation of this phenomenon over the relevant lengths scales and materials classes is still missing. Here, the thickness and permittivity-dependence of the dielectric breakdown strength of insulating crystalline and polymer materials from the millimeter down to the nanometer scale is investigated. While the dependence of breakdown strength on permittivity was found to be thickness-independent for materials in the nm-mm range, the magnitude of the breakdown strength was found to change from a thickness-independent, intrinsic regime, to a thickness-dependent, extrinsic regime. The transition-thickness is interpreted as the characteristic length of a breakdown-initiating conducting filament. The results are in agreement with a model, where the dielectric breakdown strength is defined in terms of breakdown toughness and length of a conducting filament.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-19235 (Browse shelf(Opens below)) Available

Dielectric breakdown decisively determines the reliability of nano- to centimeter sized electronic devices and components. Nevertheless, a systematic investigation of this phenomenon over the relevant lengths scales and materials classes is still missing. Here, the thickness and permittivity-dependence of the dielectric breakdown strength of insulating crystalline and polymer materials from the millimeter down to the nanometer scale is investigated. While the dependence of breakdown strength on permittivity was found to be thickness-independent for materials in the nm-mm range, the magnitude of the breakdown strength was found to change from a thickness-independent, intrinsic regime, to a thickness-dependent, extrinsic regime. The transition-thickness is interpreted as the characteristic length of a breakdown-initiating conducting filament. The results are in agreement with a model, where the dielectric breakdown strength is defined in terms of breakdown toughness and length of a conducting filament.

There are no comments on this title.

to post a comment.