Image from Google Jackets

Predicting strain and stress fields in self-sensing nanocomposites using deep learned electrical tomography

Tipo de material: TextoTextoSeries ; Smart Materials and Structures, 31(4), p.045024, 2022Trabajos contenidos:
  • Chen, L
  • Hassan, H
  • Tallman, T. N
  • Huang, S. S
  • Smyl, D
Tema(s): Recursos en línea: Resumen: Conductive nanocomposites, enabled by their piezoresistivity, have emerged as a new instrument in structural health monitoring. To this end, studies have recently found that electrical resistance tomography (ERT), a non-destructive conductivity imaging technique, can be utilized with piezoresistive nanocomposites to detect and localize damage. Furthermore, by incorporating complementary optimization protocols, the mechanical state of the nanocomposites can also be determined. In many cases, however, such approaches may be associated with high computational cost. To address this, we develop deep learned frameworks using neural networks to directly predict strain and stress distributions-thereby bypassing the need to solve the ERT inverse problem or execute an optimization protocol to assess mechanical state. The feasibility of the learned frameworks is validated using simulated and experimental data considering a carbon nanofiber plate in tension. Results show that the learned frameworks are capable of directly and reliably predicting strain and stress distributions based on ERT voltage measurements.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-19259 (Browse shelf(Opens below)) Available

Conductive nanocomposites, enabled by their piezoresistivity, have emerged as a new instrument in structural health monitoring. To this end, studies have recently found that electrical resistance tomography (ERT), a non-destructive conductivity imaging technique, can be utilized with piezoresistive nanocomposites to detect and localize damage. Furthermore, by incorporating complementary optimization protocols, the mechanical state of the nanocomposites can also be determined. In many cases, however, such approaches may be associated with high computational cost. To address this, we develop deep learned frameworks using neural networks to directly predict strain and stress distributions-thereby bypassing the need to solve the ERT inverse problem or execute an optimization protocol to assess mechanical state. The feasibility of the learned frameworks is validated using simulated and experimental data considering a carbon nanofiber plate in tension. Results show that the learned frameworks are capable of directly and reliably predicting strain and stress distributions based on ERT voltage measurements.

There are no comments on this title.

to post a comment.