Image from Google Jackets

Mechanical behavior and failure mechanism of multilayer graphene oxides with various oxygen contents and functional types: A ReaxFF molecular dynamics simulation

Tipo de material: TextoTextoSeries ; Applied Surface Science, 606, p.154920, 2022Trabajos contenidos:
  • Bu, Y
  • Li, K
  • Guo, F
  • Liang, Z
  • Zhang, J
Tema(s): Recursos en línea: Resumen: An in-depth understanding about the failure mechanism of graphene oxide and its relationship with structure and temperature is essentially important to improve the mechanical properties of graphene oxides. In this work, a series of comparison groups have been established to investigate the effects of oxygen-containing functional group density, the number of layers, temperature, and hydroxyl to epoxy group ratio on the mechanical properties of monolayer and multilayer graphene oxides through ReaxFF molecular dynamics simulations. It is demonstrated that the position of functional group distribution plays a decisive role in the mechanical properties of graphene oxide. Meanwhile, the active thermal motion of atoms at high temperatures leads to a more fracture-prone structure, but the multilayer graphene oxide is less sensitive to temperature compared to monolayer graphene oxide. In addition, the structure with more hydroxyl groups has better mechanical properties because the distortion energy of the carbon skeleton caused by hydrogen groups is much smaller than that of epoxy groups. This study provides directions and possibilities for the optimization of the mechanical properties of graphene oxide.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-19712 (Browse shelf(Opens below)) Available

An in-depth understanding about the failure mechanism of graphene oxide and its relationship with structure and temperature is essentially important to improve the mechanical properties of graphene oxides. In this work, a series of comparison groups have been established to investigate the effects of oxygen-containing functional group density, the number of layers, temperature, and hydroxyl to epoxy group ratio on the mechanical properties of monolayer and multilayer graphene oxides through ReaxFF molecular dynamics simulations. It is demonstrated that the position of functional group distribution plays a decisive role in the mechanical properties of graphene oxide. Meanwhile, the active thermal motion of atoms at high temperatures leads to a more fracture-prone structure, but the multilayer graphene oxide is less sensitive to temperature compared to monolayer graphene oxide. In addition, the structure with more hydroxyl groups has better mechanical properties because the distortion energy of the carbon skeleton caused by hydrogen groups is much smaller than that of epoxy groups. This study provides directions and possibilities for the optimization of the mechanical properties of graphene oxide.

There are no comments on this title.

to post a comment.