Image from Google Jackets

Live-cell imaging reveals the cellular dynamics in seed development

Tipo de material: TextoTextoSeries ; Plant Science, 325, p.111485, 2022Trabajos contenidos:
  • Shin, J. M
  • Yuan, L
  • Kawashima, T
Tema(s): Recursos en línea: Resumen: Seed development in flowering plants is highly complex and governed by three genetically distinct tissues: the fertilization products, the diploid embryo and triploid endosperm, as well as the seed coat that has maternal origin. There are diverse cellular dynamics such as nuclear movement in gamete cells for fertilization, cell polarity establishment for embryo development, and multinuclear endosperm formation. These tissues also coordinate and synchronize the developmental timing for proper seed formation through cell-to-cell communications. Live-cell imaging using advanced microscopy techniques enables us to decipher the dynamics of these events. Especially, the establishment of a less-invasive semi-in vivo live-cell imaging approach has allowed us to perform time-lapse analyses for long period observation of Arabidopsis thaliana intact seed development dynamics. Here we highlight the recent trends of live-cell imaging for seed development and discuss where we are heading.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-20000 (Browse shelf(Opens below)) Available

Seed development in flowering plants is highly complex and governed by three genetically distinct tissues: the fertilization products, the diploid embryo and triploid endosperm, as well as the seed coat that has maternal origin. There are diverse cellular dynamics such as nuclear movement in gamete cells for fertilization, cell polarity establishment for embryo development, and multinuclear endosperm formation. These tissues also coordinate and synchronize the developmental timing for proper seed formation through cell-to-cell communications. Live-cell imaging using advanced microscopy techniques enables us to decipher the dynamics of these events. Especially, the establishment of a less-invasive semi-in vivo live-cell imaging approach has allowed us to perform time-lapse analyses for long period observation of Arabidopsis thaliana intact seed development dynamics. Here we highlight the recent trends of live-cell imaging for seed development and discuss where we are heading.

There are no comments on this title.

to post a comment.