Image from Google Jackets

A comprehensive metabolomics analysis of Torreya grandis nuts with the effective de-astringent treatment during the postharvest ripening stage

Tipo de material: TextoTextoSeries ; Food Chemistry, 398, p.133859, 2023Trabajos contenidos:
  • Song, L
  • Meng, X
  • Song, H
  • Gao, L
  • Gao, Y
  • Chen, W
  • Wu, J
Tema(s): Recursos en línea: Resumen: Astringency removal is important for the quality of Torreya grandis nut and occurs after harvest. Here, we evaluated the effect of NaHCO3 treatment on astringency removal and compared the differential metabolites of the seed coat and kernel using a UHPLC QQQ-MS-based metabolomics approach. The result revealed the nut astringency was primarily enriched in the seed coat with more soluble tannins. The NaHCO3 treatment greatly shortened the de-astringency process, as indicated by a faster conversion of soluble tannins to insoluble tannins and more acetaldehyde production. Besides, a total of 293 metabolites, including 92 phenolic acids and 37 flavonoids, were tentatively characterized in the seed coat. A further comparative analysis of the metabolomics indicated epigallocatechin, gallocatechin, catechin, procyanidin B1, B2, B3 and C1 to be the major metabolites influenced by the NaHCO3 treatment. This study provides new insights regarding the metabolite differences of Torreya grandis nuts processed with different de-astringent treatments.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-20214 (Browse shelf(Opens below)) Available

Astringency removal is important for the quality of Torreya grandis nut and occurs after harvest. Here, we evaluated the effect of NaHCO3 treatment on astringency removal and compared the differential metabolites of the seed coat and kernel using a UHPLC QQQ-MS-based metabolomics approach. The result revealed the nut astringency was primarily enriched in the seed coat with more soluble tannins. The NaHCO3 treatment greatly shortened the de-astringency process, as indicated by a faster conversion of soluble tannins to insoluble tannins and more acetaldehyde production. Besides, a total of 293 metabolites, including 92 phenolic acids and 37 flavonoids, were tentatively characterized in the seed coat. A further comparative analysis of the metabolomics indicated epigallocatechin, gallocatechin, catechin, procyanidin B1, B2, B3 and C1 to be the major metabolites influenced by the NaHCO3 treatment. This study provides new insights regarding the metabolite differences of Torreya grandis nuts processed with different de-astringent treatments.

There are no comments on this title.

to post a comment.