Image from Google Jackets

On rigid inclusions of minimum stress concentration

Tipo de material: TextoTextoSeries ; Journal of the Mechanics and Physics of Solids, 34(1), p.19-28, 1986Trabajos contenidos:
  • Eldiwany, B. H
  • Wheeler, L. T
Recursos en línea: Resumen: The three-dimensional problem of finding the shape of minimum stress concentration for a rigid inclusion imbedded in an elastic matrix is analyzed and solved. The matrix extends to infinity, filling the space exterior to the inclusion. Loading consists of uniform stress applied at infinity, so that in the absence of the inclusion the medium would be homogeneously stressed. The optimum inclusions are found to be ellipsoidal in shape, and conditions on the loading are found under which these ellipsoids can be rigorously proven to be optimal.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-20741 (Browse shelf(Opens below)) Available

The three-dimensional problem of finding the shape of minimum stress concentration for a rigid inclusion imbedded in an elastic matrix is analyzed and solved. The matrix extends to infinity, filling the space exterior to the inclusion. Loading consists of uniform stress applied at infinity, so that in the absence of the inclusion the medium would be homogeneously stressed. The optimum inclusions are found to be ellipsoidal in shape, and conditions on the loading are found under which these ellipsoids can be rigorously proven to be optimal.

There are no comments on this title.

to post a comment.