Image from Google Jackets

Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose-magnesium hydroxide

Tipo de material: TextoTextoSeries International Journal of Biological Macromolecules. 189, 607-617, 2021, DOI: 10.1016/j.ijbiomac.2021.08.156Trabajos contenidos:
  • Wang R
  • Deng L
  • Fan X
  • Li K
  • Lu H
  • Li W
Tema(s): Recursos en línea: Resumen: Microcrystalline cellulose (MCC), magnesium sulfate hexahydrate, and trisodium citrate were reacted in ammonia bath in an aqueous solution to prepare a MCC-magnesium hydroxide (MH) composite adsorbent, which was used to adsorb heavy metal Co(II) ion. The method of using MCC-MH to adsorb and remove Co(II) was studied under different pH values, adsorbent dosages, contact times, initial Co(II) ion concentrations, and temperatures. The optimal process parameters include an MCC-MH dosage of 2.5 mg/mL, a contact reaction equilibrium time of 50 min, a Co(II) solution pH of 6.0-8.0, an initial Co(II) concentration of 300 mg/L, and a temperature of 303 K. The removal rate of Co(II) solution by MCC-MH was as high as 97.67%, and the maximum adsorption capacity of MCC-MH reached 153.84 mg/g under these optimal conditions. The adsorption isotherm of Co(II) conformed to the Langmuir model, the kinetic data of Co(II) conformed to the pseudo-second-order kinetic model, and the adsorption of Co(II) by MCC-MH was a spontaneous endothermic reaction under the optimized conditions. Analytical studies showed that Co(II) adsorption on MCC-MH composites is affected by chemical adsorption and involves the influence of intraparticle diffusion to a certain extent. © 2021
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Microcrystalline cellulose (MCC), magnesium sulfate hexahydrate, and trisodium citrate were reacted in ammonia bath in an aqueous solution to prepare a MCC-magnesium hydroxide (MH) composite adsorbent, which was used to adsorb heavy metal Co(II) ion. The method of using MCC-MH to adsorb and remove Co(II) was studied under different pH values, adsorbent dosages, contact times, initial Co(II) ion concentrations, and temperatures. The optimal process parameters include an MCC-MH dosage of 2.5 mg/mL, a contact reaction equilibrium time of 50 min, a Co(II) solution pH of 6.0-8.0, an initial Co(II) concentration of 300 mg/L, and a temperature of 303 K. The removal rate of Co(II) solution by MCC-MH was as high as 97.67%, and the maximum adsorption capacity of MCC-MH reached 153.84 mg/g under these optimal conditions. The adsorption isotherm of Co(II) conformed to the Langmuir model, the kinetic data of Co(II) conformed to the pseudo-second-order kinetic model, and the adsorption of Co(II) by MCC-MH was a spontaneous endothermic reaction under the optimized conditions. Analytical studies showed that Co(II) adsorption on MCC-MH composites is affected by chemical adsorption and involves the influence of intraparticle diffusion to a certain extent. © 2021

There are no comments on this title.

to post a comment.