Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose-magnesium hydroxide
Tipo de material:
TextoSeries International Journal of Biological Macromolecules. 189, 607-617, 2021, DOI: 10.1016/j.ijbiomac.2021.08.156Trabajos contenidos: - Wang R
- Deng L
- Fan X
- Li K
- Lu H
- Li W
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-21265 (Browse shelf(Opens below)) | Available |
Browsing CICY shelves, Shelving location: Documento préstamo interbibliotecario, Collection: Ref1 Close shelf browser (Hides shelf browser)
Microcrystalline cellulose (MCC), magnesium sulfate hexahydrate, and trisodium citrate were reacted in ammonia bath in an aqueous solution to prepare a MCC-magnesium hydroxide (MH) composite adsorbent, which was used to adsorb heavy metal Co(II) ion. The method of using MCC-MH to adsorb and remove Co(II) was studied under different pH values, adsorbent dosages, contact times, initial Co(II) ion concentrations, and temperatures. The optimal process parameters include an MCC-MH dosage of 2.5 mg/mL, a contact reaction equilibrium time of 50 min, a Co(II) solution pH of 6.0-8.0, an initial Co(II) concentration of 300 mg/L, and a temperature of 303 K. The removal rate of Co(II) solution by MCC-MH was as high as 97.67%, and the maximum adsorption capacity of MCC-MH reached 153.84 mg/g under these optimal conditions. The adsorption isotherm of Co(II) conformed to the Langmuir model, the kinetic data of Co(II) conformed to the pseudo-second-order kinetic model, and the adsorption of Co(II) by MCC-MH was a spontaneous endothermic reaction under the optimized conditions. Analytical studies showed that Co(II) adsorption on MCC-MH composites is affected by chemical adsorption and involves the influence of intraparticle diffusion to a certain extent. © 2021
There are no comments on this title.
