Tuning the properties of porous chitosan: Aerogels and cryogels
Tipo de material:
TextoSeries International Journal of Biological Macromolecules. 202, 215-223, 2022, DOI: 10.1016/j.ijbiomac.2022.01.042Trabajos contenidos: - Chartier C
- Buwalda S
- Van Den Berghe H
- Nottelet B
- Budtova T
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Documentos solicitados
|
CICY Documento préstamo interbibliotecario | Ref1 | B-21275 (Browse shelf(Opens below)) | Available |
Browsing CICY shelves, Shelving location: Documento préstamo interbibliotecario, Collection: Ref1 Close shelf browser (Hides shelf browser)
Highly porous chitosan-based materials were prepared via dissolution, non-solvent induced phase separation and drying using different methods. The goal was to tune the morphology and properties of chitosan porous materials by varying process parameters. Chitosan concentration, concentration of sodium hydroxide in the coagulation bath and aging time were varied. Drying was performed via freeze-drying leading to "cryogels" or via drying with supercritical CO2 leading to "aerogels". Cryogels were of lower density than aerogels (0.03-0.12 g/cm3 vs 0.07-0.26 g/cm3, respectively) and had a lower specific surface area (50-70 vs 200-270 m2/g, respectively). The absorption of simulated wound exudate by chitosan aerogels and cryogels was studied in view of their potential applications as wound dressing. Higher absorption was obtained for cryogels (530-1500%) as compared to aerogels (200-610%). © 2022
There are no comments on this title.
