Image from Google Jackets

Building Synthetic Yeast Factories to Produce Fat-soluble Antioxidants

Tipo de material: TextoTextoSeries Current Opinion in Biotechnology. 87, 103129, 2024, DOI: 10.1016/j.copbio.2024.103129Trabajos contenidos:
  • Zhao Y
  • Yao Z
  • Desai V
  • Chen D
  • Shao Z
Recursos en línea: Resumen: Fat-soluble antioxidants play a vital role in protecting the body against oxidative stress and damage. The rapid advancements in metabolic engineering and synthetic biology have offered a promising avenue for economically producing fat-soluble antioxidants by engineering microbial chassis. This review provides an overview of the recent progress in engineering yeast microbial factories to produce three main groups of lipophilic antioxidants: carotenoids, vitamin E, and stilbenoids. In addition to discussing the classic strategies employed to improve precursor availability and alleviate carbon flux competition, this review delves deeper into the innovative approaches focusing on enzyme engineering, product sequestration, subcellular compartmentalization, multistage fermentation, and morphology engineering. We conclude the review by highlighting the prospects of microbial engineering for lipophilic antioxidant production. © 2024 Elsevier Ltd
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-21301 (Browse shelf(Opens below)) Available

Fat-soluble antioxidants play a vital role in protecting the body against oxidative stress and damage. The rapid advancements in metabolic engineering and synthetic biology have offered a promising avenue for economically producing fat-soluble antioxidants by engineering microbial chassis. This review provides an overview of the recent progress in engineering yeast microbial factories to produce three main groups of lipophilic antioxidants: carotenoids, vitamin E, and stilbenoids. In addition to discussing the classic strategies employed to improve precursor availability and alleviate carbon flux competition, this review delves deeper into the innovative approaches focusing on enzyme engineering, product sequestration, subcellular compartmentalization, multistage fermentation, and morphology engineering. We conclude the review by highlighting the prospects of microbial engineering for lipophilic antioxidant production. © 2024 Elsevier Ltd

There are no comments on this title.

to post a comment.