Image from Google Jackets

Recent progress in the application of in situ atomic force microscopy for metal anode processes in energy storage batteries

Tipo de material: TextoTextoSeries Chemical Physics Reviews, 4(3)Trabajos contenidos:
  • Wang, J., Liu, R. Z., Shen, Z. Z., Tian, J. X., & Wen, R
Tema(s): Recursos en línea: Resumen: Metal anodes are considered promising candidates for next-generation rechargeable batteries owing to their high theoretical specific capacities. However, practical applications are limited by safety concerns and poor electrochemical performance caused by unstable solid electrolyte interphase (SEI) and uncontrolled metal deposition at the metal anode/electrolyte interface. An in-depth understanding of the interfacial reactions is of vital significance for the development of metal anode-based batteries. In situ electrochemical atomic force microscopy (ECAFM) enabling high spatial resolution imaging and multifunctional detection is widely used to monitor electrode/electrolyte interfaces in working batteries. In this review, we summarize recent advances in the application of in situ EC-AFM for metal anode processes, including SEI formation and the deposition/dissolution processes of metallic lithium, magnesium, and zinc in metal anode-based batteries, which are conducive to the optimization of metal anodes in energy storage batteries.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-12078 (Browse shelf(Opens below)) Available

Artículo

Metal anodes are considered promising candidates for next-generation rechargeable batteries owing to their high theoretical specific capacities. However, practical applications are limited by safety concerns and poor electrochemical performance caused by unstable solid electrolyte interphase (SEI) and uncontrolled metal deposition at the metal anode/electrolyte interface. An in-depth understanding of the interfacial reactions is of vital significance for the development of metal anode-based batteries. In situ electrochemical atomic force microscopy (ECAFM) enabling high spatial resolution imaging and multifunctional detection is widely used to monitor electrode/electrolyte interfaces in working batteries. In this review, we summarize recent advances in the application of in situ EC-AFM for metal anode processes, including SEI formation and the deposition/dissolution processes of metallic lithium, magnesium, and zinc in metal anode-based batteries, which are conducive to the optimization of metal anodes in energy storage batteries.

There are no comments on this title.

to post a comment.