Image from Google Jackets

Advancements in Bipolar Membrane Electrodialysis Techniques for Carbon Capture

Tipo de material: TextoTextoSeries Langmuir 2024, 40, 9362-9384Trabajos contenidos:
  • Khoiruddin, K
  • Wenten, I. G
  • Siagian, U. W
Recursos en línea: Resumen: Bipolar membrane electrodialysis (BMED) is a promising technology for the capture of carbon dioxide (CO2) from seawater, offering a sustainable solution to combat climate change. BMED efficiently extracts CO2 while generating valuable byproducts like hydrogen and minerals, contributing to the carbon cycle. The technology relies on ion-exchange membranes and electric fields for efficient ion separation and concentration. Recent advancements focus on enhancing water dissociation in bipolar membranes (BPMs) to improve efficiency and durability. BMED has applications in desalination, electrodialysis, water splitting, acid/base production, and CO2 capture and utilization. Despite the high efficiency, scalability, and environmental friendliness, challenges such as energy consumption and membrane costs exist. Recent innovations include novel BPM designs, catalyst integration, and exploring direct air/ocean capture. Research and development efforts are crucial to unlocking BMED's full potential in reducing carbon emissions and addressing environmental issues. This review provides a comprehensive overview of recent advancements in BMED, emphasizing its role in carbon capture and sustainable environmental solutions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Documentos solicitados Documentos solicitados CICY Documento préstamo interbibliotecario Ref1 B-21563 (Browse shelf(Opens below)) Available

Artículo

Bipolar membrane electrodialysis (BMED) is a promising technology for the capture of carbon dioxide (CO2) from seawater, offering a sustainable solution to combat climate change. BMED efficiently extracts CO2 while generating valuable byproducts like hydrogen and minerals, contributing to the carbon cycle. The technology relies on ion-exchange membranes and electric fields for efficient ion separation and concentration. Recent advancements focus on enhancing water dissociation in bipolar membranes (BPMs) to improve efficiency and durability. BMED has applications in desalination, electrodialysis, water splitting, acid/base production, and CO2 capture and utilization. Despite the high efficiency, scalability, and environmental friendliness, challenges such as energy consumption and membrane costs exist. Recent innovations include novel BPM designs, catalyst integration, and exploring direct air/ocean capture. Research and development efforts are crucial to unlocking BMED's full potential in reducing carbon emissions and addressing environmental issues. This review provides a comprehensive overview of recent advancements in BMED, emphasizing its role in carbon capture and sustainable environmental solutions.

There are no comments on this title.

to post a comment.