Image from Google Jackets

Advanced BDD Optimization [recurso electrónico] / by Rüdiger Ebendt, Görschwin Fey, Rolf Drechsler.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Boston, MA : Springer US, 2005Descripción: X, 222 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387254548
  • 99780387254548
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 621.3815 23
Recursos en línea:
Contenidos:
Preface. 1. Introduction. 2. Preliminaries. 2.1. Notation. 2.2. Boolean Functions. 2.3. Decomposition of Boolean Functions. 2.4. Reduced Ordered Binary Decision Diagrams -- 3. Exact node Minimization. 3.1. Branch and Bound Algorithm. 3.2. A*-Based Optimization. 3.3. Summary -- 4. Heuristic node Minimization. 4.1. Efficient Dynamic Minimization. 4.2. Improved Lower Bounds for Dynamic Reordering. 4.3. Efficient Forms of Improved Lower Bounds. 4.4. Combination of Improved Lower Bounds with Classical Bounds. 4.5. Experimental Results. 4.6. Summary -- 5. Path Minimization. 5.1. Minimization of Number of Paths. 5.2. Minimization of Expected Path Length. 5.3. Minimization of Average Path Length. 5.4. Summary -- 6. Relation between SAT and BDDS. 6.1. Davis-Putnam Procedure. 6.2. On the Relation between DP Procedure and BDDs. 6.3. Dynamic Variable Ordering Strategy for DP Procedure. 6.4. Experimental Results. 6.5. Summary -- 7. Final Remarks. References. Index.
En: Springer eBooksResumen: The size of technically producible integrated circuits increases continuously. But the ability to design and verify these circuits does not keep up with this development. Therefore today's design flow has to be improved to achieve a higher productivity. In Robustness and Usability in Modern Design Flows the current design methodology and verification methodology are analyzed, a number of deficiencies are identified and solutions suggested. Improvements in the methodology as well as in the underlying algorithms are proposed. An in-depth presentation of preliminary concepts makes the book self-contained. Based on this foundation major design problems are targeted. In particular, a complete tool flow for Synthesis for Testability of SystemC descriptions is presented. The resulting circuits are completely testable and test pattern generation in polynomial time is possible. Verification issues are covered in even more detail. A whole new paradigm for formal design verification is suggested. This is based upon design understanding, the automatic generation of properties and powerful tool support for debugging failures. All these new techniques are empirically evaluated and experimental results are provided. As a result, an enhanced design flow is created that provides more automation (i.e. better usability) and reduces the probability of introducing conceptual errors (i.e. higher robustness).
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 621.3815 (Browse shelf(Opens below)) Available

Preface. 1. Introduction. 2. Preliminaries. 2.1. Notation. 2.2. Boolean Functions. 2.3. Decomposition of Boolean Functions. 2.4. Reduced Ordered Binary Decision Diagrams -- 3. Exact node Minimization. 3.1. Branch and Bound Algorithm. 3.2. A*-Based Optimization. 3.3. Summary -- 4. Heuristic node Minimization. 4.1. Efficient Dynamic Minimization. 4.2. Improved Lower Bounds for Dynamic Reordering. 4.3. Efficient Forms of Improved Lower Bounds. 4.4. Combination of Improved Lower Bounds with Classical Bounds. 4.5. Experimental Results. 4.6. Summary -- 5. Path Minimization. 5.1. Minimization of Number of Paths. 5.2. Minimization of Expected Path Length. 5.3. Minimization of Average Path Length. 5.4. Summary -- 6. Relation between SAT and BDDS. 6.1. Davis-Putnam Procedure. 6.2. On the Relation between DP Procedure and BDDs. 6.3. Dynamic Variable Ordering Strategy for DP Procedure. 6.4. Experimental Results. 6.5. Summary -- 7. Final Remarks. References. Index.

The size of technically producible integrated circuits increases continuously. But the ability to design and verify these circuits does not keep up with this development. Therefore today's design flow has to be improved to achieve a higher productivity. In Robustness and Usability in Modern Design Flows the current design methodology and verification methodology are analyzed, a number of deficiencies are identified and solutions suggested. Improvements in the methodology as well as in the underlying algorithms are proposed. An in-depth presentation of preliminary concepts makes the book self-contained. Based on this foundation major design problems are targeted. In particular, a complete tool flow for Synthesis for Testability of SystemC descriptions is presented. The resulting circuits are completely testable and test pattern generation in polynomial time is possible. Verification issues are covered in even more detail. A whole new paradigm for formal design verification is suggested. This is based upon design understanding, the automatic generation of properties and powerful tool support for debugging failures. All these new techniques are empirically evaluated and experimental results are provided. As a result, an enhanced design flow is created that provides more automation (i.e. better usability) and reduces the probability of introducing conceptual errors (i.e. higher robustness).

There are no comments on this title.

to post a comment.