Image from Google Jackets

Metaheuristic Procedures for Training Neutral Networks [recurso electrónico] / edited by Enrique Alba, Rafael Martí.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Operations Research/Computer Science Interfaces Series ; 36Editor: Boston, MA : Springer US, 2006Descripción: XI, 250 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387334165
  • 99780387334165
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 658.40301 23
Recursos en línea:
Contenidos:
Classical Training Methods -- Local Search Based Methods -- Simulated Annealing -- Tabu Search -- Variable Neighbourhood Search -- Population Based Methods -- Estimation of Distribution Algorithms -- Genetic Algorithms -- Scatter Search -- Other Advanced Methods -- Ant Colony Optimization -- Cooperative Coevolutionary Methods -- Greedy Randomized Adaptive Search Procedures -- Memetic Algorithms.
En: Springer eBooksResumen: Metaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 658.40301 (Browse shelf(Opens below)) Available

Classical Training Methods -- Local Search Based Methods -- Simulated Annealing -- Tabu Search -- Variable Neighbourhood Search -- Population Based Methods -- Estimation of Distribution Algorithms -- Genetic Algorithms -- Scatter Search -- Other Advanced Methods -- Ant Colony Optimization -- Cooperative Coevolutionary Methods -- Greedy Randomized Adaptive Search Procedures -- Memetic Algorithms.

Metaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.

There are no comments on this title.

to post a comment.