Image from Google Jackets

Techniques of Constructive Analysis [recurso electrónico] / by Douglas S. Bridges, Luminiţa Simona Vîţă.

Por: Colaborador(es): Tipo de material: TextoTextoSeries UniversitextEditor: New York, NY : Springer New York, 2006Descripción: XVI, 213 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387381473
  • 99780387381473
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 511.3 23
Recursos en línea:
Contenidos:
to Constructive Mathematics -- Techniques of Elementary Analysis -- The ?-Technique -- Finite-Dimensional and Hilbert Spaces -- Linearity and Convexity -- Operators and Locatedness.
En: Springer eBooksResumen: This text provides a rigorous, wide-ranging introduction to modern constructive analysis for anyone with a strong mathematical background who is interested in the challenge of developing mathematics algorithmically. The authors begin by outlining the history of constructive mathematics, and the logic and set theory that are used throughout the book. They then present a new construction of the real numbers, followed by the fundamentals of the constructive theory of metric and normed spaces; the lambda-technique (a special method that enables one to prove many results that appear, at first sight, to be nonconstructive); finite- dimensional and Hilbert spaces; and convexity, separation, and Hahn-Banach theorems. The book ends with a long chapter in which the work of the preceding ones is applied to operator theory and other aspects of functional analysis. Many results and proofs, especially in the later chapters, are of relatively recent origin. The intended readership includes advanced undergraduates, postgraduates, and professional researchers in mathematics and theoretical computer science. With this book, the authors hope to spread the message that doing mathematics constructively is interesting and challenging, and produces new, deep computational information.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 511.3 (Browse shelf(Opens below)) Available

to Constructive Mathematics -- Techniques of Elementary Analysis -- The ?-Technique -- Finite-Dimensional and Hilbert Spaces -- Linearity and Convexity -- Operators and Locatedness.

This text provides a rigorous, wide-ranging introduction to modern constructive analysis for anyone with a strong mathematical background who is interested in the challenge of developing mathematics algorithmically. The authors begin by outlining the history of constructive mathematics, and the logic and set theory that are used throughout the book. They then present a new construction of the real numbers, followed by the fundamentals of the constructive theory of metric and normed spaces; the lambda-technique (a special method that enables one to prove many results that appear, at first sight, to be nonconstructive); finite- dimensional and Hilbert spaces; and convexity, separation, and Hahn-Banach theorems. The book ends with a long chapter in which the work of the preceding ones is applied to operator theory and other aspects of functional analysis. Many results and proofs, especially in the later chapters, are of relatively recent origin. The intended readership includes advanced undergraduates, postgraduates, and professional researchers in mathematics and theoretical computer science. With this book, the authors hope to spread the message that doing mathematics constructively is interesting and challenging, and produces new, deep computational information.

There are no comments on this title.

to post a comment.