Image from Google Jackets

Functional Equations and How to Solve Them [recurso electrónico] / edited by Christopher G. Small.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Problem Books in MathematicsEditor: New York, NY : Springer New York, 2007Descripción: XII, 129 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387489018
  • 99780387489018
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 515.625 23
  • 515.75 23
Recursos en línea:
Contenidos:
An historical introduction -- Functional equations with two variables -- Functional equations with one variable -- Miscellaneous methods for functional equations -- Some closing heuristics -- Appendix: Hamel bases -- Hints and partial solutions to problems.
En: Springer eBooksResumen: This book covers topics in the theory and practice of functional equations. Special emphasis is given to methods for solving functional equations that appear in mathematics contests, such as the Putnam competition and the International Mathematical Olympiad. This book will be of particular interest to university students studying for the Putnam competition, and to high school students working to improve their skills on mathematics competitions at the national and international level. Mathematics educators who train students for these competitions will find a wealth of material for training on functional equations problems. The book also provides a number of brief biographical sketches of some of the mathematicians who pioneered the theory of functional equations. The work of Oresme, Cauchy, Babbage, and others, is explained within the context of the mathematical problems of interest at the time. Christopher Small is a Professor in the Department of Statistics and Actuarial Science at the University of Waterloo. He has served as the co-coach on the Canadian team at the IMO (1997, 1998, 2000, 2001, and 2004), as well as the Waterloo Putnam team for the William Lowell Putnam Competition (1986-2004). His previous books include Numerical Methods for Nonlinear Estimating Equations (Oxford 2003), The Statistical Theory of Shape (Springer 1996), Hilbert Space Methods in Probability and Statistical Inference (Wiley 1994). From the reviews: Functional Equations and How to Solve Them fills a need and is a valuable contribution to the literature of problem solving. - Henry Ricardo, MAA Reviews The main purpose and merits of the book...are the many solved, unsolved, partially solved problems and hints about several particular functional equations. - Janos Aczel, Zentralblatt
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 515.625 | 515.75 (Browse shelf(Opens below)) Available

An historical introduction -- Functional equations with two variables -- Functional equations with one variable -- Miscellaneous methods for functional equations -- Some closing heuristics -- Appendix: Hamel bases -- Hints and partial solutions to problems.

This book covers topics in the theory and practice of functional equations. Special emphasis is given to methods for solving functional equations that appear in mathematics contests, such as the Putnam competition and the International Mathematical Olympiad. This book will be of particular interest to university students studying for the Putnam competition, and to high school students working to improve their skills on mathematics competitions at the national and international level. Mathematics educators who train students for these competitions will find a wealth of material for training on functional equations problems. The book also provides a number of brief biographical sketches of some of the mathematicians who pioneered the theory of functional equations. The work of Oresme, Cauchy, Babbage, and others, is explained within the context of the mathematical problems of interest at the time. Christopher Small is a Professor in the Department of Statistics and Actuarial Science at the University of Waterloo. He has served as the co-coach on the Canadian team at the IMO (1997, 1998, 2000, 2001, and 2004), as well as the Waterloo Putnam team for the William Lowell Putnam Competition (1986-2004). His previous books include Numerical Methods for Nonlinear Estimating Equations (Oxford 2003), The Statistical Theory of Shape (Springer 1996), Hilbert Space Methods in Probability and Statistical Inference (Wiley 1994). From the reviews: Functional Equations and How to Solve Them fills a need and is a valuable contribution to the literature of problem solving. - Henry Ricardo, MAA Reviews The main purpose and merits of the book...are the many solved, unsolved, partially solved problems and hints about several particular functional equations. - Janos Aczel, Zentralblatt

There are no comments on this title.

to post a comment.