Image from Google Jackets

Instability in Models Connected with Fluid Flows I [recurso electrónico] / edited by Claude Bardos, Andrei Fursikov.

Por: Colaborador(es): Tipo de material: TextoTextoSeries International Mathematical Series ; 6Editor: New York, NY : Springer New York, 2008Descripción: online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387752174
  • 99780387752174
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 515 23
Recursos en línea:
Contenidos:
Solid Controllability in Fluid Dynamics -- Analyticity of Periodic Solutions of the 2D Boussinesq System -- Nonlinear Dynamics of a System of Particle-Like Wavepackets -- Attractors for Nonautonomous Navier-Stokes System and Other Partial Differential Equations -- Recent Results in Large Amplitude Monophase Nonlinear Geometric Optics -- Existence Theorems for the 3D-Navier-Stokes System Having as Initial Conditions Sums of Plane Waves -- Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains -- Increased Stability in the Cauchy Problem for Some Elliptic Equations.
En: Springer eBooksResumen: Instability in Models Connected with Fluid Flows I presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large time asymptotics of solutions, stochastic equations, Euler equations, Navier-Stokes equations, and other PDEs of fluid mechanics. Fields covered include: controllability and accessibility properties of the Navier- Stokes and Euler systems, nonlinear dynamics of particle-like wavepackets, attractors of nonautonomous Navier-Stokes systems, large amplitude monophase nonlinear geometric optics, existence results for 3D Navier-Stokes equations and smoothness results for 2D Boussinesq equations, instability of incompressible Euler equations, increased stability in the Cauchy problem for elliptic equations. Contributors include: Andrey Agrachev (Italy-Russia) and Andrey Sarychev (Italy); Maxim Arnold (Russia); Anatoli Babin (USA) and Alexander Figotin (USA); Vladimir Chepyzhov (Russia) and Mark Vishik (Russia); Christophe Cheverry (France); Efim Dinaburg (Russia) and Yakov Sinai (USA-Russia); Francois Golse (France), Alex Mahalov (USA), and Basil Nicolaenko (USA); Victor Isakov (USA)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 515 (Browse shelf(Opens below)) Available

Solid Controllability in Fluid Dynamics -- Analyticity of Periodic Solutions of the 2D Boussinesq System -- Nonlinear Dynamics of a System of Particle-Like Wavepackets -- Attractors for Nonautonomous Navier-Stokes System and Other Partial Differential Equations -- Recent Results in Large Amplitude Monophase Nonlinear Geometric Optics -- Existence Theorems for the 3D-Navier-Stokes System Having as Initial Conditions Sums of Plane Waves -- Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains -- Increased Stability in the Cauchy Problem for Some Elliptic Equations.

Instability in Models Connected with Fluid Flows I presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large time asymptotics of solutions, stochastic equations, Euler equations, Navier-Stokes equations, and other PDEs of fluid mechanics. Fields covered include: controllability and accessibility properties of the Navier- Stokes and Euler systems, nonlinear dynamics of particle-like wavepackets, attractors of nonautonomous Navier-Stokes systems, large amplitude monophase nonlinear geometric optics, existence results for 3D Navier-Stokes equations and smoothness results for 2D Boussinesq equations, instability of incompressible Euler equations, increased stability in the Cauchy problem for elliptic equations. Contributors include: Andrey Agrachev (Italy-Russia) and Andrey Sarychev (Italy); Maxim Arnold (Russia); Anatoli Babin (USA) and Alexander Figotin (USA); Vladimir Chepyzhov (Russia) and Mark Vishik (Russia); Christophe Cheverry (France); Efim Dinaburg (Russia) and Yakov Sinai (USA-Russia); Francois Golse (France), Alex Mahalov (USA), and Basil Nicolaenko (USA); Victor Isakov (USA)

There are no comments on this title.

to post a comment.