Image from Google Jackets

Wavelet Methods in Statistics with R [recurso electrónico] / edited by G. P. Nason.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Use R!Editor: New York, NY : Springer New York, 2008Descripción: X, 259 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387759616
  • 99780387759616
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 519.5 23
Recursos en línea:
Contenidos:
Wavelets, discrete wavelet transforms, non-decimated transforms, wavelet packet transforms, lifting transforms -- Multiscale methods for denoising (wavelet shrinkage) -- Locally stationary wavelet time series and texture modelling -- Multiscale variable transformations for Gaussianization and variance stabilization -- Miscellaneous topics.
En: Springer eBooksResumen: Wavelet methods have recently undergone a rapid period of development with important implications for a number of disciplines including statistics. This book has three main objectives: (i) providing an introduction to wavelets and their uses in statistics; (ii) acting as a quick and broad reference to many developments in the area; (iii) interspersing R code that enables the reader to learn the methods, to carry out their own analyses, and further develop their own ideas. The book code is designed to work with the freeware R package WaveThresh4, but the book can be read independently of R. The book introduces the wavelet transform by starting with the simple Haar wavelet transform, and then builds to consider more general wavelets, complex-valued wavelets, non-decimated transforms, multidimensional wavelets, multiple wavelets, wavelet packets, boundary handling, and initialization. Later chapters consider a variety of wavelet-based nonparametric regression methods for different noise models and designs including density estimation, hazard rate estimation, and inverse problems; the use of wavelets for stationary and non-stationary time series analysis; and how wavelets might be used for variance estimation and intensity estimation for non-Gaussian sequences. The book is aimed both at Masters/Ph.D. students in a numerate discipline (such as statistics, mathematics, economics, engineering, computer science, and physics) and postdoctoral researchers/users interested in statistical wavelet methods. Guy Nason is Professor of Statistics at the University of Bristol. He has been actively involved in the development of various wavelet methods in statistics since 1993. He was awarded the Royal Statistical Society's 2001 Guy Medal in Bronze for work on wavelets in statistics. He was the author of the first, free, generally available wavelet package for statistical purposes in S and R (WaveThresh2).
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 519.5 (Browse shelf(Opens below)) Available

Wavelets, discrete wavelet transforms, non-decimated transforms, wavelet packet transforms, lifting transforms -- Multiscale methods for denoising (wavelet shrinkage) -- Locally stationary wavelet time series and texture modelling -- Multiscale variable transformations for Gaussianization and variance stabilization -- Miscellaneous topics.

Wavelet methods have recently undergone a rapid period of development with important implications for a number of disciplines including statistics. This book has three main objectives: (i) providing an introduction to wavelets and their uses in statistics; (ii) acting as a quick and broad reference to many developments in the area; (iii) interspersing R code that enables the reader to learn the methods, to carry out their own analyses, and further develop their own ideas. The book code is designed to work with the freeware R package WaveThresh4, but the book can be read independently of R. The book introduces the wavelet transform by starting with the simple Haar wavelet transform, and then builds to consider more general wavelets, complex-valued wavelets, non-decimated transforms, multidimensional wavelets, multiple wavelets, wavelet packets, boundary handling, and initialization. Later chapters consider a variety of wavelet-based nonparametric regression methods for different noise models and designs including density estimation, hazard rate estimation, and inverse problems; the use of wavelets for stationary and non-stationary time series analysis; and how wavelets might be used for variance estimation and intensity estimation for non-Gaussian sequences. The book is aimed both at Masters/Ph.D. students in a numerate discipline (such as statistics, mathematics, economics, engineering, computer science, and physics) and postdoctoral researchers/users interested in statistical wavelet methods. Guy Nason is Professor of Statistics at the University of Bristol. He has been actively involved in the development of various wavelet methods in statistics since 1993. He was awarded the Royal Statistical Society's 2001 Guy Medal in Bronze for work on wavelets in statistics. He was the author of the first, free, generally available wavelet package for statistical purposes in S and R (WaveThresh2).

There are no comments on this title.

to post a comment.