Image from Google Jackets

Generalized Measure Theory [recurso electrónico] / by Zhenyuan Wang, George J. Klir.

Por: Colaborador(es): Tipo de material: TextoTextoSeries IFSR International Series on Systems Science and Engineering ; 25Editor: Boston, MA : Springer US, 2009Descripción: XVI, 384p. 50 illus., 25 illus. in color. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9780387768526
  • 99780387768526
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 515.42 23
Recursos en línea:
Contenidos:
Preliminaries -- Basic Ideas of Generalized Measure Theory -- Special Areas of Generalized Measure Theory -- Extensions -- Structural Characteristics for Set Functions -- Measurable Functions on Monotone Measure Spaces -- Integration -- Sugeno Integrals -- Pan-Integrals -- Choquet Integrals -- Upper and Lower Integrals -- Constructing General Measures -- Fuzzification of Generalized Measures and the Choquet Integral -- Applications of Generalized Measure Theory.
En: Springer eBooksResumen: This comprehensive text examines the relatively new mathematical area of generalized measure theory. This area expands classical measure theory by abandoning the requirement of additivity and replacing it with various weaker requirements. Each of these weaker requirements characterizes a class of nonadditive measures. This results in new concepts and methods that allow us to deal with many problems in a more realistic way. For example, it allows us to work with imprecise probabilities. The exposition of generalized measure theory unfolds systematically. It begins with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory. About the Authors: Zhenyuan Wang is currently a Professor in the Department of Mathematics of University of Nebraska at Omaha. His research interests have been in the areas of nonadditive measures, nonlinear integrals, probability and statistics, and data mining. He has published one book and many papers in these areas. George J. Klir is currently a Distinguished Professor of Systems Science at Binghamton University (SUNY at Binghamton). He has published 29 books and well over 300 papers in a wide range of areas. His current research interests are primarily in the areas of fuzzy systems, soft computing, and generalized information theory.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 515.42 (Browse shelf(Opens below)) Available

Preliminaries -- Basic Ideas of Generalized Measure Theory -- Special Areas of Generalized Measure Theory -- Extensions -- Structural Characteristics for Set Functions -- Measurable Functions on Monotone Measure Spaces -- Integration -- Sugeno Integrals -- Pan-Integrals -- Choquet Integrals -- Upper and Lower Integrals -- Constructing General Measures -- Fuzzification of Generalized Measures and the Choquet Integral -- Applications of Generalized Measure Theory.

This comprehensive text examines the relatively new mathematical area of generalized measure theory. This area expands classical measure theory by abandoning the requirement of additivity and replacing it with various weaker requirements. Each of these weaker requirements characterizes a class of nonadditive measures. This results in new concepts and methods that allow us to deal with many problems in a more realistic way. For example, it allows us to work with imprecise probabilities. The exposition of generalized measure theory unfolds systematically. It begins with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory. About the Authors: Zhenyuan Wang is currently a Professor in the Department of Mathematics of University of Nebraska at Omaha. His research interests have been in the areas of nonadditive measures, nonlinear integrals, probability and statistics, and data mining. He has published one book and many papers in these areas. George J. Klir is currently a Distinguished Professor of Systems Science at Binghamton University (SUNY at Binghamton). He has published 29 books and well over 300 papers in a wide range of areas. His current research interests are primarily in the areas of fuzzy systems, soft computing, and generalized information theory.

There are no comments on this title.

to post a comment.