Image from Google Jackets

Resampling Methods [electronic resource] : A Practical Guide to Data Analysis / by Phillip I. Good.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Boston, MA : Birkhäuser Boston, 2006Edición: Third EditionDescripción: XX, 218p. 40 illus. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9780817644444
  • 99780817644444
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 519.5 23
Recursos en línea:
Contenidos:
Software for Resampling -- Estimating Population Parameters -- Comparing Two Populations -- Choosing the Best Procedure -- Experimental Design and Analysis -- Categorical Data -- Multiple Variables and Multiple Hypotheses -- Model Building -- Decision Trees.
En: Springer eBooksResumen: "...the author has packaged an excellent and modern set of topics around the development and use of quantitative models.... If you need to learn about resampling, this book would be a good place to start." -Technometrics (Review of the Second Edition) This thoroughly revised and expanded third edition is a practical guide to data analysis using the bootstrap, cross-validation, and permutation tests. Only requiring minimal mathematics beyond algebra, the book provides a table-free introduction to data analysis utilizing numerous exercises, practical data sets, and freely available statistical shareware. Topics and Features * Practical presentation covers both the bootstrap and permutations along with the program code necessary to put them to work. * Includes a systematic guide to selecting the correct procedure for a particular application. * Detailed coverage of classification, estimation, experimental design, hypothesis testing, and modeling. * Suitable for both classroom use and individual self-study. New to the Third Edition * Procedures are grouped by application; a prefatory chapter guides readers to the appropriate reading matter. * Program listings and screen shots now accompany each resampling procedure: Whether one programs in C++, CART, Blossom, Box Sampler (an Excel add-in), EViews, MATLAB, R, Resampling Stats, SAS macros, S-PLUS, Stata, or StatXact, readers will find the program listings and screen shots needed to put each resampling procedure into practice. * To simplify programming, code for readers to download and apply is posted at http://www.springeronline.com/0-8176-4386-9. * Notation has been simplified and, where possible, eliminated. * A glossary and answers to selected exercises are included. With its accessible style and intuitive topic development, the book is an excellent basic resource for the power, simplicity, and versatility of resampling methods. It is an essential resource for statisticians, biostatisticians, statistical consultants, students, and research professionals in the biological, physical, and social sciences, engineering, and technology.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 519.5 (Browse shelf(Opens below)) Available

Software for Resampling -- Estimating Population Parameters -- Comparing Two Populations -- Choosing the Best Procedure -- Experimental Design and Analysis -- Categorical Data -- Multiple Variables and Multiple Hypotheses -- Model Building -- Decision Trees.

"...the author has packaged an excellent and modern set of topics around the development and use of quantitative models.... If you need to learn about resampling, this book would be a good place to start." -Technometrics (Review of the Second Edition) This thoroughly revised and expanded third edition is a practical guide to data analysis using the bootstrap, cross-validation, and permutation tests. Only requiring minimal mathematics beyond algebra, the book provides a table-free introduction to data analysis utilizing numerous exercises, practical data sets, and freely available statistical shareware. Topics and Features * Practical presentation covers both the bootstrap and permutations along with the program code necessary to put them to work. * Includes a systematic guide to selecting the correct procedure for a particular application. * Detailed coverage of classification, estimation, experimental design, hypothesis testing, and modeling. * Suitable for both classroom use and individual self-study. New to the Third Edition * Procedures are grouped by application; a prefatory chapter guides readers to the appropriate reading matter. * Program listings and screen shots now accompany each resampling procedure: Whether one programs in C++, CART, Blossom, Box Sampler (an Excel add-in), EViews, MATLAB, R, Resampling Stats, SAS macros, S-PLUS, Stata, or StatXact, readers will find the program listings and screen shots needed to put each resampling procedure into practice. * To simplify programming, code for readers to download and apply is posted at http://www.springeronline.com/0-8176-4386-9. * Notation has been simplified and, where possible, eliminated. * A glossary and answers to selected exercises are included. With its accessible style and intuitive topic development, the book is an excellent basic resource for the power, simplicity, and versatility of resampling methods. It is an essential resource for statisticians, biostatisticians, statistical consultants, students, and research professionals in the biological, physical, and social sciences, engineering, and technology.

There are no comments on this title.

to post a comment.