Image from Google Jackets

Dirac Operators in Representation Theory [electronic resource] / by Jing-Song Huang, Pavle Pandžić.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Mathematics: Theory & ApplicationsEditor: Boston, MA : Birkhäuser Boston, 2006Descripción: X, 199p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9780817644932
  • 99780817644932
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 512.55 23
  • 512.482 23
Recursos en línea:
Contenidos:
Lie Groups, Lie Algebras and Representations -- Clifford Algebras and Spinors -- Dirac Operators in the Algebraic Setting -- A Generalized Bott-Borel-Weil Theorem -- Cohomological Induction -- Properties of Cohomologically Induced Modules -- Discrete Series -- Dimensions of Spaces of Automorphic Forms -- Dirac Operators and Nilpotent Lie Algebra Cohomology -- Dirac Cohomology for Lie Superalgebras.
En: Springer eBooksResumen: This monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related concept of Dirac cohomology, which is defined using Dirac operators, is a far-reaching generalization that connects index theory in differential geometry to representation theory. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. Key topics covered include: * Proof of Vogan's conjecture on Dirac cohomology * Simple proofs of many classical theorems, such as the Bott-Borel-Weil theorem and the Atiyah-Schmid theorem * Dirac cohomology, defined by Kostant's cubic Dirac operator, along with other closely related kinds of cohomology, such as n-cohomology and (g,K)-cohomology * Cohomological parabolic induction and $A_q(\lambda)$ modules * Discrete series theory, characters, existence and exhaustion * Sharpening of the Langlands formula on multiplicity of automorphic forms, with applications * Dirac cohomology for Lie superalgebras An excellent contribution to the mathematical literature of representation theory, this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 512.55 | 512.482 (Browse shelf(Opens below)) Available

Lie Groups, Lie Algebras and Representations -- Clifford Algebras and Spinors -- Dirac Operators in the Algebraic Setting -- A Generalized Bott-Borel-Weil Theorem -- Cohomological Induction -- Properties of Cohomologically Induced Modules -- Discrete Series -- Dimensions of Spaces of Automorphic Forms -- Dirac Operators and Nilpotent Lie Algebra Cohomology -- Dirac Cohomology for Lie Superalgebras.

This monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related concept of Dirac cohomology, which is defined using Dirac operators, is a far-reaching generalization that connects index theory in differential geometry to representation theory. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. Key topics covered include: * Proof of Vogan's conjecture on Dirac cohomology * Simple proofs of many classical theorems, such as the Bott-Borel-Weil theorem and the Atiyah-Schmid theorem * Dirac cohomology, defined by Kostant's cubic Dirac operator, along with other closely related kinds of cohomology, such as n-cohomology and (g,K)-cohomology * Cohomological parabolic induction and $A_q(\lambda)$ modules * Discrete series theory, characters, existence and exhaustion * Sharpening of the Langlands formula on multiplicity of automorphic forms, with applications * Dirac cohomology for Lie superalgebras An excellent contribution to the mathematical literature of representation theory, this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.

There are no comments on this title.

to post a comment.