Topics in the Theory of Algebraic Function Fields [electronic resource] / by Gabriel Daniel Villa Salvador.
Tipo de material:
TextoSeries Mathematics: Theory & ApplicationsEditor: Boston, MA : Birkhäuser Boston, 2006Descripción: XVI, 652 p. online resourceTipo de contenido: - text
- computer
- online resource
- 9780817645151
- 99780817645151
- 512.7 23
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Libros electrónicos
|
CICY Libro electrónico | Libro electrónico | 512.7 (Browse shelf(Opens below)) | Available |
Algebraic and Numerical Antecedents -- Algebraic Function Fields of One Variable -- The Riemann-Roch Theorem -- Examples -- Extensions and Galois Theory -- Congruence Function Fields -- The Riemann Hypothesis -- Constant and Separable Extensions -- The Riemann-Hurwitz Formula -- Cryptography and Function Fields -- to Class Field Theory -- Cyclotomic Function Fields -- Drinfeld Modules -- Automorphisms and Galois Theory.
The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers, where a function field of one variable is the analogue of a finite extension of Q, the field of rational numbers. The author does not ignore the geometric-analytic aspects of function fields, but leaves an in-depth examination from this perspective to others. Key topics and features: * Contains an introductory chapter on algebraic and numerical antecedents, including transcendental extensions of fields, absolute values on Q, and Riemann surfaces * Focuses on the Riemann-Roch theorem, covering divisors, adeles or repartitions, Weil differentials, class partitions, and more * Includes chapters on extensions, automorphisms and Galois theory, congruence function fields, the Riemann Hypothesis, the Riemann-Hurwitz Formula, applications of function fields to cryptography, class field theory, cyclotomic function fields, and Drinfeld modules * Explains both the similarities and fundamental differences between function fields and number fields * Includes many exercises and examples to enhance understanding and motivate further study The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra. The book can serve as a text for a graduate course in number theory or an advanced graduate topics course. Alternatively, chapters 1-4 can serve as the base of an introductory undergraduate course for mathematics majors, while chapters 5-9 can support a second course for advanced undergraduates. Researchers interested in number theory, field theory, and their interactions will also find the work an excellent reference.
There are no comments on this title.
