Image from Google Jackets

Developments and Trends in Infinite-Dimensional Lie Theory [electronic resource] / edited by Karl-Hermann Neeb, Arturo Pianzola.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematics ; 288Editor: Boston : Birkhäuser Boston, 2011Descripción: VIII, 492p. 9 illus. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9780817647414
  • 99780817647414
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 512.55 23
  • 512.482 23
Recursos en línea:
Contenidos:
Preface -- Part A: Infinite-Dimensional Lie (Super-)Algebras -- Isotopy for Extended Affine Lie Algebras and Lie Tori -- Remarks on the Isotriviality of Multiloop Algebras -- Extended Affine Lie Algebras and Other Generalizations of Affine Lie Algebras - A Survey -- Tensor Representations of Classical Locally Finite Lie Algebras -- Lie Algebras, Vertex Algebras, and Automorphic Forms -- Kac-Moody Superalgebras and Integrability -- Part B: Geometry of Infinite-Dimensional Lie (Transformation) Groups -- Jordan Structures and Non-Associative Geometry -- Direct Limits of Infinite-Dimensional Lie Groups -- Lie Groups of Bundle Automorphisms and Their Extensions -- Gerbes and Lie Groups -- Part C: Representation Theory of Infinite-Dimensional Lie Groups Functional Analytic Background for a Theory of Infinite- Dimensional Reductive Lie Groups -- Heat Kernel Measures and Critical Limits -- Coadjoint Orbits and the Beginnings of a Geometric Representation Theory -- Infinite-Dimensional Multiplicity-Free Spaces I: Limits of Compact Commutative Spaces -- Index.
En: Springer eBooksResumen: This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kac-Moody superalgebras. The articles in Part (B) examine connections between infinite-dimensional Lie theory and geometry. The topics range from infinite-dimensional groups acting on fiber bundles, corresponding characteristic classes and gerbes, to Jordan-theoretic geometries and new results on direct-limit groups. The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach-Lie-Poisson spaces, and infinite-dimensional generalizations of reductive Lie groups. Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 512.55 | 512.482 (Browse shelf(Opens below)) Available

Preface -- Part A: Infinite-Dimensional Lie (Super-)Algebras -- Isotopy for Extended Affine Lie Algebras and Lie Tori -- Remarks on the Isotriviality of Multiloop Algebras -- Extended Affine Lie Algebras and Other Generalizations of Affine Lie Algebras - A Survey -- Tensor Representations of Classical Locally Finite Lie Algebras -- Lie Algebras, Vertex Algebras, and Automorphic Forms -- Kac-Moody Superalgebras and Integrability -- Part B: Geometry of Infinite-Dimensional Lie (Transformation) Groups -- Jordan Structures and Non-Associative Geometry -- Direct Limits of Infinite-Dimensional Lie Groups -- Lie Groups of Bundle Automorphisms and Their Extensions -- Gerbes and Lie Groups -- Part C: Representation Theory of Infinite-Dimensional Lie Groups Functional Analytic Background for a Theory of Infinite- Dimensional Reductive Lie Groups -- Heat Kernel Measures and Critical Limits -- Coadjoint Orbits and the Beginnings of a Geometric Representation Theory -- Infinite-Dimensional Multiplicity-Free Spaces I: Limits of Compact Commutative Spaces -- Index.

This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kac-Moody superalgebras. The articles in Part (B) examine connections between infinite-dimensional Lie theory and geometry. The topics range from infinite-dimensional groups acting on fiber bundles, corresponding characteristic classes and gerbes, to Jordan-theoretic geometries and new results on direct-limit groups. The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach-Lie-Poisson spaces, and infinite-dimensional generalizations of reductive Lie groups. Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.

There are no comments on this title.

to post a comment.