Image from Google Jackets

Spectral Methods in Surface Superconductivity [electronic resource] / by Søren Fournais, Bernard Helffer.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Nonlinear Differential Equations and Their Applications ; 77Editor: Boston : Birkhäuser Boston, 2009Descripción: XX, 324p. 2 illus. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9780817647971
  • 99780817647971
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 515.7 23
Recursos en línea:
Contenidos:
Linear Analysis -- Spectral Analysis of Schrödinger Operators -- Diamagnetism -- Models in One Dimension -- Constant Field Models in Dimension 2: Noncompact Case -- Constant Field Models in Dimension 2: Discs and Their Complements -- Models in Dimension 3: or.
En: Springer eBooksResumen: During the past decade, the mathematics of superconductivity has been the subject of intense activity. This book examines in detail the nonlinear Ginzburg-Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong magnetic field and with a sufficiently large Ginzburg-Landau parameter kappa. Key topics and features of the work: * Provides a concrete introduction to techniques in spectral theory and partial differential equations * Offers a complete analysis of the two-dimensional Ginzburg-Landau functional with large kappa in the presence of a magnetic field * Treats the three-dimensional case thoroughly * Includes open problems Spectral Methods in Surface Superconductivity is intended for students and researchers with a graduate-level understanding of functional analysis, spectral theory, and the analysis of partial differential equations. The book also includes an overview of all nonstandard material as well as important semi-classical techniques in spectral theory that are involved in the nonlinear study of superconductivity.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 515.7 (Browse shelf(Opens below)) Available

Linear Analysis -- Spectral Analysis of Schrödinger Operators -- Diamagnetism -- Models in One Dimension -- Constant Field Models in Dimension 2: Noncompact Case -- Constant Field Models in Dimension 2: Discs and Their Complements -- Models in Dimension 3: or.

During the past decade, the mathematics of superconductivity has been the subject of intense activity. This book examines in detail the nonlinear Ginzburg-Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong magnetic field and with a sufficiently large Ginzburg-Landau parameter kappa. Key topics and features of the work: * Provides a concrete introduction to techniques in spectral theory and partial differential equations * Offers a complete analysis of the two-dimensional Ginzburg-Landau functional with large kappa in the presence of a magnetic field * Treats the three-dimensional case thoroughly * Includes open problems Spectral Methods in Surface Superconductivity is intended for students and researchers with a graduate-level understanding of functional analysis, spectral theory, and the analysis of partial differential equations. The book also includes an overview of all nonstandard material as well as important semi-classical techniques in spectral theory that are involved in the nonlinear study of superconductivity.

There are no comments on this title.

to post a comment.