Image from Google Jackets

Stochastic Models, Information Theory, and Lie Groups, Volume 1 [electronic resource] : Classical Results and Geometric Methods / by Gregory S. Chirikjian.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Applied and Numerical Harmonic AnalysisEditor: Boston : Birkhäuser Boston, 2009Descripción: XXII, 383p. 13 illus. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9780817648039
  • 99780817648039
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 519 23
Recursos en línea:
Contenidos:
Gaussian Distributions and the Heat Equation -- Probability and Information Theory -- Stochastic Differential Equations -- Geometry of Curves and Surfaces -- Differential Forms -- Polytopes and Manifolds -- Stochastic Processes on Manifolds -- Summary.
En: Springer eBooksResumen: The subjects of stochastic processes, information theory, and Lie groups are usually treated separately from each other. This unique two-volume set presents these topics in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Volume 1 establishes the geometric and statistical foundations required to understand the fundamentals of continuous-time stochastic processes, differential geometry, and the probabilistic foundations of information theory. Volume 2 delves deeper into relationships between these topics, including stochastic geometry, geometric aspects of the theory of communications and coding, multivariate statistical analysis, and error propagation on Lie groups. Key features and topics of  Volume 1: * The author reviews stochastic processes and basic differential geometry in an accessible way for applied mathematicians, scientists, and engineers. * Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry. * The concept of Lie groups as continuous sets of symmetry operations is introduced. * The Fokker-Planck Equation for diffusion processes in Euclidean space and on differentiable manifolds is derived in a way that can be understood by nonspecialists. * The concrete presentation style makes it easy for readers to obtain numerical solutions for their own problems; the emphasis is on how to calculate quantities rather than how to prove theorems. * A self-contained appendix provides a comprehensive review of concepts from linear algebra, multivariate calculus, and systems of ordinary differential equations. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 519 (Browse shelf(Opens below)) Available

Gaussian Distributions and the Heat Equation -- Probability and Information Theory -- Stochastic Differential Equations -- Geometry of Curves and Surfaces -- Differential Forms -- Polytopes and Manifolds -- Stochastic Processes on Manifolds -- Summary.

The subjects of stochastic processes, information theory, and Lie groups are usually treated separately from each other. This unique two-volume set presents these topics in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Volume 1 establishes the geometric and statistical foundations required to understand the fundamentals of continuous-time stochastic processes, differential geometry, and the probabilistic foundations of information theory. Volume 2 delves deeper into relationships between these topics, including stochastic geometry, geometric aspects of the theory of communications and coding, multivariate statistical analysis, and error propagation on Lie groups. Key features and topics of  Volume 1: * The author reviews stochastic processes and basic differential geometry in an accessible way for applied mathematicians, scientists, and engineers. * Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry. * The concept of Lie groups as continuous sets of symmetry operations is introduced. * The Fokker-Planck Equation for diffusion processes in Euclidean space and on differentiable manifolds is derived in a way that can be understood by nonspecialists. * The concrete presentation style makes it easy for readers to obtain numerical solutions for their own problems; the emphasis is on how to calculate quantities rather than how to prove theorems. * A self-contained appendix provides a comprehensive review of concepts from linear algebra, multivariate calculus, and systems of ordinary differential equations. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering.

There are no comments on this title.

to post a comment.