Image from Google Jackets

Information Extraction: Algorithms and Prospects in a Retrieval Context [electronic resource] / by Marie-Francine Moens.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Dordrecht : Springer Netherlands, 2006Descripción: XIII, 246 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9781402049934
  • 99781402049934
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 025.04 23
Recursos en línea:
Contenidos:
Information Extraction and Information Technology -- Information Extraction from an Historical Perspective -- The Symbolic Techniques -- Pattern Recognition -- Supervised Classification -- Unsupervised Classification Aids -- Integration of Information Extraction in Retrieval Models -- Evaluation of Information Extraction Technologies -- Case Studies -- The Future of Information Extraction in a Retrieval Context.
En: Springer eBooksResumen: Information extraction regards the processes of structuring and combining content that is explicitly stated or implied in one or multiple unstructured information sources. It involves a semantic classification and linking of certain pieces of information and is considered as a light form of content understanding by the machine. Currently, there is a considerable interest in integrating the results of information extraction in retrieval systems, because of the growing demand for search engines that return precise answers to flexible information queries. Advanced retrieval models satisfy that need and they rely on tools that automatically build a probabilistic model of the content of a (multi-media) document. The book focuses on content recognition in text. It elaborates on the past and current most successful algorithms and their application in a variety of domains (e.g., news filtering, mining of biomedical text, intelligence gathering, competitive intelligence, legal information searching, and processing of informal text). An important part discusses current statistical and machine learning algorithms for information detection and classification and integrates their results in probabilistic retrieval models. The book also reveals a number of ideas towards an advanced understanding and synthesis of textual content. The book is aimed at researchers and software developers interested in information extraction and retrieval, but the many illustrations and real world examples make it also suitable as a handbook for students.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 025.04 (Browse shelf(Opens below)) Available

Information Extraction and Information Technology -- Information Extraction from an Historical Perspective -- The Symbolic Techniques -- Pattern Recognition -- Supervised Classification -- Unsupervised Classification Aids -- Integration of Information Extraction in Retrieval Models -- Evaluation of Information Extraction Technologies -- Case Studies -- The Future of Information Extraction in a Retrieval Context.

Information extraction regards the processes of structuring and combining content that is explicitly stated or implied in one or multiple unstructured information sources. It involves a semantic classification and linking of certain pieces of information and is considered as a light form of content understanding by the machine. Currently, there is a considerable interest in integrating the results of information extraction in retrieval systems, because of the growing demand for search engines that return precise answers to flexible information queries. Advanced retrieval models satisfy that need and they rely on tools that automatically build a probabilistic model of the content of a (multi-media) document. The book focuses on content recognition in text. It elaborates on the past and current most successful algorithms and their application in a variety of domains (e.g., news filtering, mining of biomedical text, intelligence gathering, competitive intelligence, legal information searching, and processing of informal text). An important part discusses current statistical and machine learning algorithms for information detection and classification and integrates their results in probabilistic retrieval models. The book also reveals a number of ideas towards an advanced understanding and synthesis of textual content. The book is aimed at researchers and software developers interested in information extraction and retrieval, but the many illustrations and real world examples make it also suitable as a handbook for students.

There are no comments on this title.

to post a comment.