Image from Google Jackets

Microgravity Two-Phase Flow and Heat Transfer [electronic resource] / by Kamiel S. Gabriel.

Por: Colaborador(es): Tipo de material: TextoTextoSeries The Space Technology Library ; 19Editor: Dordrecht : Springer Netherlands, 2007Descripción: XXV, 234 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9781402051432
  • 99781402051432
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 629.2 23
Recursos en línea:
Contenidos:
Classification of Gas-Liquid Flow Patterns -- Flow Pattern Transition Models -- Gas-Liquid Flow Pressure Drop -- Void Fraction -- Gas-Liquid Flow Heat Transfer -- Modeling Periodic Slug Flows Using a Volume of Fluid Method -- Summary and Conclusion.
En: Springer eBooksResumen: Multiphase thermal systems (involving more than one phase or one component) have numerous applications in aerospace, heat-exchanger, transport of contaminants in environmental systems, and energy transport and energy conversion systems. Advances in understanding the behaviour of multiphase thermal systems could lead to higher efficiency energy production systems, improved heat-exchanger design, and safer and enhanced treatment of hazardous waste. But such advances have been greatly hindered by the strong effect of gravitational acceleration on the flow. Depending on the flow orientation and the phase velocities, gravitational forces could significantly alter the flow regime, and hence the pressure-drop and heat-transfer coefficients associated with the flow. A reduced gravity environment (or "microgravity"), provides an excellent tool to study the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 629.2 (Browse shelf(Opens below)) Available

Classification of Gas-Liquid Flow Patterns -- Flow Pattern Transition Models -- Gas-Liquid Flow Pressure Drop -- Void Fraction -- Gas-Liquid Flow Heat Transfer -- Modeling Periodic Slug Flows Using a Volume of Fluid Method -- Summary and Conclusion.

Multiphase thermal systems (involving more than one phase or one component) have numerous applications in aerospace, heat-exchanger, transport of contaminants in environmental systems, and energy transport and energy conversion systems. Advances in understanding the behaviour of multiphase thermal systems could lead to higher efficiency energy production systems, improved heat-exchanger design, and safer and enhanced treatment of hazardous waste. But such advances have been greatly hindered by the strong effect of gravitational acceleration on the flow. Depending on the flow orientation and the phase velocities, gravitational forces could significantly alter the flow regime, and hence the pressure-drop and heat-transfer coefficients associated with the flow. A reduced gravity environment (or "microgravity"), provides an excellent tool to study the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity.

There are no comments on this title.

to post a comment.