Image from Google Jackets

PRECISION TEMPERATURE SENSORS IN CMOS TECHNOLOGY [electronic resource] / by Michiel A.P. Pertijs, Johan H. Huijsing.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Analog Circuits and Signal ProcessingEditor: Dordrecht : Springer Netherlands, 2006Descripción: XII, 301 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9781402052583
  • 99781402052583
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 621.3815 23
Recursos en línea:
Contenidos:
Acknowledgment -- 1. Introduction -- 2. Characteristics of Bipolar Transistors -- 3. Ratiometric Temperature Measurement Using Bipolar Transistors -- 4. Sigma-Delta Analog-To-Digital Conversion -- 5. Precision Circuit Techniques -- 6. Calibration Techniques -- 7. Realizations -- 8. Conclusions -- Appendices. A Derivation of Mismatch-Related Errors. A.1 Errors in DVBE B Resolution Limits of Sigma-Delta Modulators with a DC Input. C Non-Exponential Settling Transients -- About the Authors -- Index.
En: Springer eBooksResumen: This book describes the analysis and design of precision temperature sensors in CMOS IC technology. It focusses on so-called smart temperature sensors, which provide a digital output signal that can be readily interpreted by a computer. The sensors described in this book are based on bipolar transistors, which are available as parasitic devices in standard CMOS technology. The relevant physical properties of these devices are described. A sigma-delta converter plays a key role in the conversion to a digital output. Both the system-level design of such a converter, and the circuit-level implementation using both continuous-time and switched-capacitor techniques are described. Special attention is paid to the application of precision interfacing techniques. Precision Temperature Sensors in CMOS Technology ends with a detailed description of three realized prototypes. The final prototype achieves an inaccuracy of only ±0.1ºC (3Sigma) over the temperature range of -55ºC to 125ºC, which is the highest performance reported to date.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 621.3815 (Browse shelf(Opens below)) Available

Acknowledgment -- 1. Introduction -- 2. Characteristics of Bipolar Transistors -- 3. Ratiometric Temperature Measurement Using Bipolar Transistors -- 4. Sigma-Delta Analog-To-Digital Conversion -- 5. Precision Circuit Techniques -- 6. Calibration Techniques -- 7. Realizations -- 8. Conclusions -- Appendices. A Derivation of Mismatch-Related Errors. A.1 Errors in DVBE B Resolution Limits of Sigma-Delta Modulators with a DC Input. C Non-Exponential Settling Transients -- About the Authors -- Index.

This book describes the analysis and design of precision temperature sensors in CMOS IC technology. It focusses on so-called smart temperature sensors, which provide a digital output signal that can be readily interpreted by a computer. The sensors described in this book are based on bipolar transistors, which are available as parasitic devices in standard CMOS technology. The relevant physical properties of these devices are described. A sigma-delta converter plays a key role in the conversion to a digital output. Both the system-level design of such a converter, and the circuit-level implementation using both continuous-time and switched-capacitor techniques are described. Special attention is paid to the application of precision interfacing techniques. Precision Temperature Sensors in CMOS Technology ends with a detailed description of three realized prototypes. The final prototype achieves an inaccuracy of only ±0.1ºC (3Sigma) over the temperature range of -55ºC to 125ºC, which is the highest performance reported to date.

There are no comments on this title.

to post a comment.