Image from Google Jackets

Factorization Method in Quantum Mechanics [electronic resource] / by Shi-Hai Dong.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Fundamental Theories of Physics ; 150Editor: Dordrecht : Springer Netherlands, 2007Descripción: XIX, 297 p. online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9781402057960
  • 99781402057960
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 539.72 23
Recursos en línea:
Contenidos:
METHOD -- THEORY -- LIE ALGEBRAS SU(2) AND SU(1, 1) -- APPLICATIONS IN NON-RELATIVISTIC QUANTUM MECHANICS -- HARMONIC OSCILLATOR -- INFINITELY DEEP SQUARE-WELL POTENTIAL -- MORSE POTENTIAL -- PÖSCHL-TELLER POTENTIAL -- PSEUDOHARMONIC OSCILLATOR -- ALGEBRAIC APPROACH TO AN ELECTRON IN A UNIFORM MAGNETIC FIELD -- RING-SHAPED NON-SPHERICAL OSCILLATOR -- GENERALIZED LAGUERRE FUNCTIONS -- NEW NONCENTRAL RING-SHAPED POTENTIAL -- PÖSCHL-TELLER LIKE POTENTIAL -- POSITION-DEPENDENT MASS SCHRÖDINGER EQUATION FOR A SINGULAR OSCILLATOR -- APPLICATIONS IN RELATIVISTIC QUANTUM MECHANICS -- SUSYQM AND SWKB APPROACH TO THE DIRAC EQUATION WITH A COULOMB POTENTIAL IN 2+1 DIMENSIONS -- REALIZATION OF DYNAMIC GROUP FOR THE DIRAC HYDROGEN-LIKE ATOM IN 2+1 DIMENSIONS -- ALGEBRAIC APPROACH TO KLEIN-GORDON EQUATION WITH THE HYDROGEN-LIKE ATOM IN 2+1 DIMENSIONS -- SUSYQM AND SWKB APPROACHES TO RELATIVISTIC DIRAC AND KLEIN-GORDON EQUATIONS WITH HYPERBOLIC POTENTIAL -- QUANTUM CONTROL -- CONTROLLABILITY OF QUANTUM SYSTEMS FOR THE MORSE AND PT POTENTIALS WITH DYNAMIC GROUP SU(2) -- CONTROLLABILITY OF QUANTUM SYSTEM FOR THE PT-LIKE POTENTIAL WITH DYNAMIC GROUP SU(1, 1) -- CONCLUSIONS AND OUTLOOKS -- CONCLUSIONS AND OUTLOOKS.
En: Springer eBooksResumen: This Work introduces the factorization method in quantum mechanics at an advanced level with an aim to put mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the Reader's disposal. For this purpose a comprehensive description is provided of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. Related to this classic method are the supersymmetric quantum mechanics, shape invariant potentials and group theoretical approaches. It is no exaggeration to say that this method has become the milestone of these approaches. In fact the Author's driving force has been his desire to provide a comprehensive review volume that includes some new and significant results about the factorization method in quantum mechanics since the literature is inundated with scattered articles in this field, and to pave the Reader's way into this territory as rapidly as possible. The result: clear and understandable derivations with the necessary mathematical steps included so that the intelligent reader should be able to follow the text with relative ease, in particular when mathematically difficult material is presented. Audience: Researchers and students of physics, mathematics, chemistry and electrical engineering.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 539.72 (Browse shelf(Opens below)) Available

METHOD -- THEORY -- LIE ALGEBRAS SU(2) AND SU(1, 1) -- APPLICATIONS IN NON-RELATIVISTIC QUANTUM MECHANICS -- HARMONIC OSCILLATOR -- INFINITELY DEEP SQUARE-WELL POTENTIAL -- MORSE POTENTIAL -- PÖSCHL-TELLER POTENTIAL -- PSEUDOHARMONIC OSCILLATOR -- ALGEBRAIC APPROACH TO AN ELECTRON IN A UNIFORM MAGNETIC FIELD -- RING-SHAPED NON-SPHERICAL OSCILLATOR -- GENERALIZED LAGUERRE FUNCTIONS -- NEW NONCENTRAL RING-SHAPED POTENTIAL -- PÖSCHL-TELLER LIKE POTENTIAL -- POSITION-DEPENDENT MASS SCHRÖDINGER EQUATION FOR A SINGULAR OSCILLATOR -- APPLICATIONS IN RELATIVISTIC QUANTUM MECHANICS -- SUSYQM AND SWKB APPROACH TO THE DIRAC EQUATION WITH A COULOMB POTENTIAL IN 2+1 DIMENSIONS -- REALIZATION OF DYNAMIC GROUP FOR THE DIRAC HYDROGEN-LIKE ATOM IN 2+1 DIMENSIONS -- ALGEBRAIC APPROACH TO KLEIN-GORDON EQUATION WITH THE HYDROGEN-LIKE ATOM IN 2+1 DIMENSIONS -- SUSYQM AND SWKB APPROACHES TO RELATIVISTIC DIRAC AND KLEIN-GORDON EQUATIONS WITH HYPERBOLIC POTENTIAL -- QUANTUM CONTROL -- CONTROLLABILITY OF QUANTUM SYSTEMS FOR THE MORSE AND PT POTENTIALS WITH DYNAMIC GROUP SU(2) -- CONTROLLABILITY OF QUANTUM SYSTEM FOR THE PT-LIKE POTENTIAL WITH DYNAMIC GROUP SU(1, 1) -- CONCLUSIONS AND OUTLOOKS -- CONCLUSIONS AND OUTLOOKS.

This Work introduces the factorization method in quantum mechanics at an advanced level with an aim to put mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the Reader's disposal. For this purpose a comprehensive description is provided of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. Related to this classic method are the supersymmetric quantum mechanics, shape invariant potentials and group theoretical approaches. It is no exaggeration to say that this method has become the milestone of these approaches. In fact the Author's driving force has been his desire to provide a comprehensive review volume that includes some new and significant results about the factorization method in quantum mechanics since the literature is inundated with scattered articles in this field, and to pave the Reader's way into this territory as rapidly as possible. The result: clear and understandable derivations with the necessary mathematical steps included so that the intelligent reader should be able to follow the text with relative ease, in particular when mathematically difficult material is presented. Audience: Researchers and students of physics, mathematics, chemistry and electrical engineering.

There are no comments on this title.

to post a comment.