Image from Google Jackets

Baseband Analog Circuits for Software Defined Radio [electronic resource] / by Vito Giannini, Jan Craninckx, Andrea Baschirotto.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Analog Circuits and Signal Processing SeriesEditor: Dordrecht : Springer Netherlands, 2008Descripción: online resourceTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9781402065385
  • 99781402065385
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD:
  • 621.3815 23
Recursos en línea:
Contenidos:
4G Mobile Terminals -- Software Defined Radio Front Ends -- Link Budget Analysis in the Sdr Analog Baseband Section -- Flexible Analog Building Blocks -- Implementations of Flexible Filters for Sdr Front End.
En: Springer eBooksResumen: By the end of this decade, a 4G wireless terminal will be available that provides high quality multimedia, personalized services, and ubiquitous multi-standard broadband connectivity with a reasonable power consumption. In this context, a multi-band transceiver is needed that provides a high-level of programmability while keeping low design complexity and costs. Software Defined Radio (SDR) is the most promising technology to implement such a terminal as it enables multi-mode reception by tuning to any frequency band, by selecting any channel bandwidth, and by detecting any modulation. Baseband Analog Circuits for Software Defined Radio aims to describe the transition towards a Software Radio from the analog design perspective. As the original idea of a "full-digital" Software Radio is far from the state-of-art, an analog front-end is still needed to achieve a feasible implementation. Most of the existent front-end architectures are explored from the flexibility point of view. A complete overview of the actual state-of-art for reconfigurable transceivers is given in detail, focusing on the challenges imposed by flexibility in analog design. As far as the design of adaptive analog circuits is concerned, specifications like bandwidth, gain, noise, resolution and linearity should be programmable. The development of circuit topologies and architectures that can be easily reconfigured while providing a near optimal power/performance trade-offs is a key challenge. In this book, we tackle this challenge mainly for baseband analog circuits, i.e. amplifiers and filters, proposing efficient solutions that provide a high level of programmability. Measurements results validate the design strategies.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Libros electrónicos Libros electrónicos CICY Libro electrónico Libro electrónico 621.3815 (Browse shelf(Opens below)) Available

4G Mobile Terminals -- Software Defined Radio Front Ends -- Link Budget Analysis in the Sdr Analog Baseband Section -- Flexible Analog Building Blocks -- Implementations of Flexible Filters for Sdr Front End.

By the end of this decade, a 4G wireless terminal will be available that provides high quality multimedia, personalized services, and ubiquitous multi-standard broadband connectivity with a reasonable power consumption. In this context, a multi-band transceiver is needed that provides a high-level of programmability while keeping low design complexity and costs. Software Defined Radio (SDR) is the most promising technology to implement such a terminal as it enables multi-mode reception by tuning to any frequency band, by selecting any channel bandwidth, and by detecting any modulation. Baseband Analog Circuits for Software Defined Radio aims to describe the transition towards a Software Radio from the analog design perspective. As the original idea of a "full-digital" Software Radio is far from the state-of-art, an analog front-end is still needed to achieve a feasible implementation. Most of the existent front-end architectures are explored from the flexibility point of view. A complete overview of the actual state-of-art for reconfigurable transceivers is given in detail, focusing on the challenges imposed by flexibility in analog design. As far as the design of adaptive analog circuits is concerned, specifications like bandwidth, gain, noise, resolution and linearity should be programmable. The development of circuit topologies and architectures that can be easily reconfigured while providing a near optimal power/performance trade-offs is a key challenge. In this book, we tackle this challenge mainly for baseband analog circuits, i.e. amplifiers and filters, proposing efficient solutions that provide a high level of programmability. Measurements results validate the design strategies.

There are no comments on this title.

to post a comment.